1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial_device.isph"
#include "../common/math/closest_point.isph"
struct TriangleMesh
{
ALIGNED_STRUCT_(16)
uniform Vertex* vertices;
uniform Triangle* triangles;
uniform unsigned int num_vertices;
uniform unsigned int num_triangles;
uniform RTCGeometry geom;
uniform unsigned int geomID;
};
struct Instance
{
ALIGNED_STRUCT_(16)
RTCGeometry geometry;
RTCScene object;
uniform int userID;
AffineSpace3f local2world;
AffineSpace3f world2local;
LinearSpace3f normal2world;
Vec3f lower;
Vec3f upper;
};
/* for animation */
uniform float g_last_time = 0.f;
uniform float g_animate_time = 0.f;
extern uniform bool g_animate;
extern uniform bool g_userDefinedInstancing;
/* scene data */
RTCScene g_scene0 = NULL;
RTCScene g_sceneEmbreeInstance = NULL;
RTCScene g_sceneUserDefinedInstance = NULL;
// scene containing all instances. will point to g_sceneEmbreeInstance or
// g_sceneUserDefinedInstance depending on g_userDefinedInstancing
RTCScene g_scene = NULL;
uniform Instance* uniform g_instance[3] = { NULL, NULL, NULL };
uniform RTCGeometry g_instanceEmbree[3] = { NULL, NULL, NULL };
uniform TriangleMesh g_triangle_meshes[4];
/* data for visualization */
struct VisualizationData
{
RTCGeometry spheres_geom;
RTCGeometry lines_geom;
uniform unsigned int num_point_queries;
uniform unsigned int spheres_geomID;
uniform unsigned int lines_geomID;
uniform Vec4f* uniform sphere_vertex_buffer;
uniform Vec4f* uniform line_vertex_buffer;
uniform unsigned int* uniform line_index_buffer;
};
void init_VisualizationData(uniform VisualizationData * uniform visData)
{
visData->num_point_queries = 10;
visData->spheres_geomID = 1111111;
visData->lines_geomID = 1111112;
visData->sphere_vertex_buffer = NULL;
visData->line_vertex_buffer = NULL;
visData->line_index_buffer = NULL;
}
uniform VisualizationData g_visDataEmbreeInstance;
uniform VisualizationData g_visDataUserDefinedInstance;
inline void pushInstanceId(uniform RTCIntersectContext* uniform ctx, uniform unsigned int id)
{
#if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
ctx->instID[ctx->instStackSize++] = id;
#else
ctx->instID[0] = id;
#endif
}
inline void popInstanceId(uniform RTCIntersectContext* uniform ctx)
{
#if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
ctx->instID[--ctx->instStackSize] = RTC_INVALID_GEOMETRY_ID;
#else
ctx->instID[0] = RTC_INVALID_GEOMETRY_ID;
#endif
}
inline void copyInstanceIdStack(uniform const RTCIntersectContext* uniform ctx, varying unsigned* uniform tgt)
{
tgt[0] = ctx->instID[0];
#if (RTC_MAX_INSTANCE_LEVEL_COUNT > 1)
for (unsigned l = 1; l < RTC_MAX_INSTANCE_LEVEL_COUNT && l < ctx->instStackSize; ++l)
tgt[l] = ctx->instID[l];
#endif
}
// ======================================================================== //
// everything needed for closest point query //
// ======================================================================== //
struct ClosestPointResult
{
Vec3f p;
unsigned int primID;
unsigned int geomID;
};
inline uniform AffineSpace3f from_raw(uniform float* uniform raw)
{
return make_AffineSpace3f(*((uniform AffineSpace3fa* uniform)((uniform float* uniform)raw)));
}
inline void to_raw(uniform float* uniform raw, uniform AffineSpace3f const& m)
{
raw[ 0] = m.l.vx.x; raw[ 1] = m.l.vx.y; raw[ 2] = m.l.vx.z; raw[ 3] = 0.f;
raw[ 4] = m.l.vy.x; raw[ 5] = m.l.vy.y; raw[ 6] = m.l.vy.z; raw[ 7] = 0.f;
raw[ 8] = m.l.vz.x; raw[ 9] = m.l.vz.y; raw[10] = m.l.vz.z; raw[11] = 0.f;
raw[12] = m.p.x; raw[13] = m.p.y; raw[14] = m.p.z; raw[15] = 1.f;
}
unmasked bool closestPointFunc(RTCPointQueryFunctionArguments* uniform args)
{
assert(args->userPtr);
uniform const unsigned int geomID = args->geomID;
uniform const unsigned int primID = args->primID;
uniform RTCPointQueryContext* uniform context = args->context;
uniform const unsigned int stackSize = args->context->instStackSize;
uniform const unsigned int stackPtr = stackSize-1;
uniform AffineSpace3f inst2world = stackSize > 0
? from_raw(context->inst2world[stackPtr])
: make_AffineSpace3f_scale(make_Vec3f(1.f, 1.f, 1.f));
// query position in world space
uniform Vec3f q = make_Vec3f(args->query->x, args->query->y, args->query->z);
/*
* Get triangle information in local space
*/
uniform TriangleMesh const& triangle_mesh = g_triangle_meshes[geomID];
uniform Triangle const& t = triangle_mesh.triangles[primID];
uniform Vertex const& V0 = triangle_mesh.vertices[t.v0];
uniform Vertex const& V1 = triangle_mesh.vertices[t.v1];
uniform Vertex const& V2 = triangle_mesh.vertices[t.v2];
uniform Vec3f v0 = make_Vec3f(V0.x, V0.y, V0.z);
uniform Vec3f v1 = make_Vec3f(V1.x, V1.y, V1.z);
uniform Vec3f v2 = make_Vec3f(V2.x, V2.y, V2.z);
/*
* Bring query and primitive data in the same space if necessary.
*/
if (stackSize > 0 && args->similarityScale > 0)
{
// Instance transform is a similarity transform, therefore we
// can comute distance insformation in instance space. Therefore,
// transform query position into local instance space.
uniform AffineSpace3f m = from_raw(context->world2inst[stackPtr]);
q = xfmPoint(m, q);
}
else if (stackSize > 0)
{
// Instance transform is not a similarity tranform. We have to transform the
// primitive data into world space and perform distance computations in
// world space to ensure correctness.
v0 = xfmPoint(inst2world, v0);
v1 = xfmPoint(inst2world, v1);
v2 = xfmPoint(inst2world, v2);
}
else {
// Primitive is not instanced, therefore point query and primitive are
// already in the same space.
}
/*
* Determine distance to closest point on triangle (implemented in
* common/math/closest_point.h), and transform in world space if necessary.
*/
uniform Vec3f p = closestPointTriangle(q, v0, v1, v2);
uniform float d = distance(q, p);
if (args->similarityScale > 0)
d = d / args->similarityScale;
/*
* Store result in userPtr and update the query radius if we found a point
* closer to the query position. This is optional but allows for faster
* traversal (due to better culling).
*/
if (d < args->query->radius)
{
args->query->radius = d;
ClosestPointResult* result = (ClosestPointResult*)args->userPtr;
result->p = args->similarityScale > 0 ? xfmPoint(inst2world, p) : p;
result->primID = primID;
result->geomID = geomID;
return true; // Return true to indicate that the query radius changed.
}
return false;
}
inline void pushInstanceIdAndTransform(uniform RTCPointQueryContext* uniform context,
uniform unsigned int id,
uniform AffineSpace3f const& w2i_in,
uniform AffineSpace3f const& i2w_in)
{
context->instID[context->instStackSize] = id;
// local copies of const references to fullfill alignment constraints
uniform AffineSpace3f w2i = w2i_in;
uniform AffineSpace3f i2w = i2w_in;
const uniform unsigned int stackSize = context->instStackSize;
if (stackSize > 0) {
w2i = from_raw(context->world2inst[stackSize-1]) * w2i;
i2w = i2w * from_raw(context->inst2world[stackSize-1]);
}
to_raw(context->world2inst[stackSize], w2i);
to_raw(context->inst2world[stackSize], i2w);
context->instStackSize++;
}
inline void popInstanceIdAndTransform(uniform RTCPointQueryContext* uniform context)
{
context->instID[--context->instStackSize] = RTC_INVALID_GEOMETRY_ID;
}
unmasked bool instanceClosestPointFunc(RTCPointQueryFunctionArguments* uniform args)
{
// convert geomID in the scene to instance idx (-4)
uniform Instance* uniform instance = g_instance[args->geomID - 4];
pushInstanceIdAndTransform(args->context, instance->userID, instance->world2local, instance->local2world);
bool changed = rtcPointQuery(instance->object, args->query, args->context, 0, args->userPtr);
popInstanceIdAndTransform(args->context);
return changed;
}
// ======================================================================== //
// User defined instancing //
// ======================================================================== //
unmasked void instanceBoundsFunc(const struct RTCBoundsFunctionArguments* uniform args)
{
const uniform Instance* uniform instance = (const uniform Instance* uniform) args->geometryUserPtr;
uniform RTCBounds* uniform bounds_o = args->bounds_o;
uniform Vec3f l = instance->lower;
uniform Vec3f u = instance->upper;
uniform Vec3f p000 = xfmPoint(instance->local2world,make_Vec3f(l.x,l.y,l.z));
uniform Vec3f p001 = xfmPoint(instance->local2world,make_Vec3f(l.x,l.y,u.z));
uniform Vec3f p010 = xfmPoint(instance->local2world,make_Vec3f(l.x,u.y,l.z));
uniform Vec3f p011 = xfmPoint(instance->local2world,make_Vec3f(l.x,u.y,u.z));
uniform Vec3f p100 = xfmPoint(instance->local2world,make_Vec3f(u.x,l.y,l.z));
uniform Vec3f p101 = xfmPoint(instance->local2world,make_Vec3f(u.x,l.y,u.z));
uniform Vec3f p110 = xfmPoint(instance->local2world,make_Vec3f(u.x,u.y,l.z));
uniform Vec3f p111 = xfmPoint(instance->local2world,make_Vec3f(u.x,u.y,u.z));
uniform Vec3f lower = min(min(min(p000,p001),min(p010,p011)),min(min(p100,p101),min(p110,p111)));
uniform Vec3f upper = max(max(max(p000,p001),max(p010,p011)),max(max(p100,p101),max(p110,p111)));
bounds_o->lower_x = lower.x;
bounds_o->lower_y = lower.y;
bounds_o->lower_z = lower.z;
bounds_o->upper_x = upper.x;
bounds_o->upper_y = upper.y;
bounds_o->upper_z = upper.z;
}
unmasked void instanceIntersectFunc(const RTCIntersectFunctionNArguments* uniform args)
{
const uniform int* uniform valid = args->valid;
void* uniform ptr = args->geometryUserPtr;
uniform RTCIntersectContext* uniform context = args->context;
RTCRayHitN* uniform rays = (RTCRayHitN* uniform)args->rayhit;
assert(args->N == programCount);
if (!valid[programIndex])
return;
varying Ray *uniform ray = (varying Ray*uniform)rays;
const uniform Instance* uniform instance = (const uniform Instance* uniform)ptr;
const Vec3f ray_org = ray->org;
const Vec3f ray_dir = ray->dir;
const float ray_tnear = ray->tnear;
const float ray_tfar = ray->tfar;
ray->org = xfmPoint (instance->world2local,ray_org);
ray->dir = xfmVector(instance->world2local,ray_dir);
ray->tnear = ray_tnear;
ray->tfar = ray_tfar;
pushInstanceId(context, instance->userID);
rtcIntersectV(instance->object,context,RTCRayHit_(*ray));
popInstanceId(context);
const float updated_tfar = ray->tfar;
ray->org = ray_org;
ray->dir = ray_dir;
ray->tfar = updated_tfar;
}
uniform Instance* uniform createInstance (RTCScene scene, RTCScene object, uniform int userID, const uniform Vec3f& lower, const uniform Vec3f& upper)
{
uniform Instance* uniform instance = uniform new uniform Instance;
instance->object = object;
instance->userID = userID;
instance->lower = lower;
instance->upper = upper;
instance->local2world.l.vx = make_Vec3f(1,0,0);
instance->local2world.l.vy = make_Vec3f(0,1,0);
instance->local2world.l.vz = make_Vec3f(0,0,1);
instance->local2world.p = make_Vec3f(0,0,0);
instance->geometry = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
rtcSetGeometryUserPrimitiveCount(instance->geometry,1);
rtcSetGeometryUserData(instance->geometry,instance);
rtcSetGeometryBoundsFunction(instance->geometry,instanceBoundsFunc,NULL);
rtcSetGeometryIntersectFunction(instance->geometry,instanceIntersectFunc);
rtcSetGeometryPointQueryFunction(instance->geometry, instanceClosestPointFunc);
rtcCommitGeometry(instance->geometry);
rtcAttachGeometry(scene,instance->geometry);
rtcReleaseGeometry(instance->geometry);
return instance;
}
void updateInstance (RTCScene scene, uniform Instance* uniform instance)
{
instance->world2local = rcp(instance->local2world);
instance->normal2world = transposed(rcp(instance->local2world.l));
rtcCommitGeometry(instance->geometry);
}
// ======================================================================== //
// triangle mesh geometry //
// ======================================================================== //
uniform TriangleMesh createTriangulatedSphere (const uniform Vec3f& p, uniform float r, uniform unsigned int geomID)
{
const uniform int numPhi = 10;
const uniform int numTheta = 4*numPhi;
/* create triangle mesh */
uniform TriangleMesh mesh;
mesh.geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
mesh.geomID = geomID;
mesh.num_vertices = numTheta*(numPhi+1);
mesh.num_triangles = 2*numTheta*(numPhi-1);
mesh.vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(mesh.geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(uniform Vertex), mesh.num_vertices);
mesh.triangles = (uniform Triangle* uniform) rtcSetNewGeometryBuffer(mesh.geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(uniform Triangle),mesh.num_triangles);
/* create sphere */
uniform int tri = 0;
const uniform float rcpNumTheta = rcp((uniform float)numTheta);
const uniform float rcpNumPhi = rcp((uniform float)numPhi);
for (uniform int phi=0; phi<=numPhi; phi++)
{
for (uniform int theta=0; theta<numTheta; theta++)
{
const uniform float phif = phi*pi*rcpNumPhi;
const uniform float thetaf = theta*2.0f*pi*rcpNumTheta;
uniform Vertex& v = mesh.vertices[phi*numTheta+theta];
v.x = p.x + r*sin(phif)*sin(thetaf);
v.y = p.y + r*cos(phif);
v.z = p.z + r*sin(phif)*cos(thetaf);
}
if (phi == 0) continue;
for (uniform int theta=1; theta<=numTheta; theta++)
{
uniform int p00 = (phi-1)*numTheta+theta-1;
uniform int p01 = (phi-1)*numTheta+theta%numTheta;
uniform int p10 = phi*numTheta+theta-1;
uniform int p11 = phi*numTheta+theta%numTheta;
if (phi > 1) {
mesh.triangles[tri].v0 = p10;
mesh.triangles[tri].v1 = p00;
mesh.triangles[tri].v2 = p01;
tri++;
}
if (phi < numPhi) {
mesh.triangles[tri].v0 = p11;
mesh.triangles[tri].v1 = p10;
mesh.triangles[tri].v2 = p01;
tri++;
}
}
}
return mesh;
}
uniform TriangleMesh createCube (uniform Vec3f const& p, uniform float r, uniform unsigned int geomID)
{
uniform TriangleMesh mesh;
mesh.geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
mesh.geomID = geomID;
mesh.num_vertices = 8;
mesh.num_triangles = 12;
mesh.vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(mesh.geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(uniform Vertex), mesh.num_vertices);
mesh.triangles = (uniform Triangle* uniform)rtcSetNewGeometryBuffer(mesh.geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(uniform Triangle), mesh.num_triangles);
/* set vertices and vertex colors */
mesh.vertices[0].x = -r+p.x; mesh.vertices[0].y = -r+p.y; mesh.vertices[0].z = -r+p.z;
mesh.vertices[1].x = -r+p.x; mesh.vertices[1].y = -r+p.y; mesh.vertices[1].z = +r+p.z;
mesh.vertices[2].x = -r+p.x; mesh.vertices[2].y = +r+p.y; mesh.vertices[2].z = -r+p.z;
mesh.vertices[3].x = -r+p.x; mesh.vertices[3].y = +r+p.y; mesh.vertices[3].z = +r+p.z;
mesh.vertices[4].x = +r+p.x; mesh.vertices[4].y = -r+p.y; mesh.vertices[4].z = -r+p.z;
mesh.vertices[5].x = +r+p.x; mesh.vertices[5].y = -r+p.y; mesh.vertices[5].z = +r+p.z;
mesh.vertices[6].x = +r+p.x; mesh.vertices[6].y = +r+p.y; mesh.vertices[6].z = -r+p.z;
mesh.vertices[7].x = +r+p.x; mesh.vertices[7].y = +r+p.y; mesh.vertices[7].z = +r+p.z;
/* set triangles and face colors */
uniform int tri = 0;
// left side
mesh.triangles[tri].v0 = 0; mesh.triangles[tri].v1 = 1; mesh.triangles[tri].v2 = 2; tri++;
mesh.triangles[tri].v0 = 1; mesh.triangles[tri].v1 = 3; mesh.triangles[tri].v2 = 2; tri++;
// right side
mesh.triangles[tri].v0 = 4; mesh.triangles[tri].v1 = 6; mesh.triangles[tri].v2 = 5; tri++;
mesh.triangles[tri].v0 = 5; mesh.triangles[tri].v1 = 6; mesh.triangles[tri].v2 = 7; tri++;
// bottom side
mesh.triangles[tri].v0 = 0; mesh.triangles[tri].v1 = 4; mesh.triangles[tri].v2 = 1; tri++;
mesh.triangles[tri].v0 = 1; mesh.triangles[tri].v1 = 4; mesh.triangles[tri].v2 = 5; tri++;
// top side
mesh.triangles[tri].v0 = 2; mesh.triangles[tri].v1 = 3; mesh.triangles[tri].v2 = 6; tri++;
mesh.triangles[tri].v0 = 3; mesh.triangles[tri].v1 = 7; mesh.triangles[tri].v2 = 6; tri++;
// front side
mesh.triangles[tri].v0 = 0; mesh.triangles[tri].v1 = 2; mesh.triangles[tri].v2 = 4; tri++;
mesh.triangles[tri].v0 = 2; mesh.triangles[tri].v1 = 6; mesh.triangles[tri].v2 = 4; tri++;
// back side
mesh.triangles[tri].v0 = 1; mesh.triangles[tri].v1 = 5; mesh.triangles[tri].v2 = 3; tri++;
mesh.triangles[tri].v0 = 3; mesh.triangles[tri].v1 = 5; mesh.triangles[tri].v2 = 7; tri++;
return mesh;
}
uniform TriangleMesh createPlane (uniform AffineSpace3f M, uniform unsigned int R, uniform unsigned int geomID)
{
uniform TriangleMesh mesh;
mesh.geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
mesh.geomID = geomID;
mesh.num_vertices = (R+1)*(R+1);
mesh.num_triangles = 2*R*R;
mesh.vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(mesh.geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(uniform Vertex), mesh.num_vertices);
mesh.triangles = (uniform Triangle* uniform)rtcSetNewGeometryBuffer(mesh.geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(uniform Triangle), mesh.num_triangles);
/* set vertices and vertex colors */
for (uniform unsigned int y = 0; y <= R; ++y)
for (uniform unsigned int x = 0; x <= R; ++x)
{
uniform Vec3f p = make_Vec3f((float)x/R, (float)y/R, 0.f);
uniform Vec3f pt = xfmPoint(M, p);
mesh.vertices[y*(R+1)+x].x = pt.x;
mesh.vertices[y*(R+1)+x].y = pt.y;
mesh.vertices[y*(R+1)+x].z = pt.z;
}
/* set triangles and face colors */
for (uniform unsigned int j = 0; j < R; ++j)
for (uniform unsigned int i = 0; i < R; ++i)
{
mesh.triangles[2*(j*R+i)+0].v0 = (j*(R+1)+i);
mesh.triangles[2*(j*R+i)+0].v1 = (j*(R+1)+i) + (R + 1) + 1;
mesh.triangles[2*(j*R+i)+0].v2 = (j*(R+1)+i) + (R + 1);
mesh.triangles[2*(j*R+i)+1].v0 = (j*(R+1)+i);
mesh.triangles[2*(j*R+i)+1].v1 = (j*(R+1)+i) + 1;
mesh.triangles[2*(j*R+i)+1].v2 = (j*(R+1)+i) + (R + 1) + 1;
}
return mesh;
}
void addTriangleMeshToScene(uniform RTCScene scene, uniform TriangleMesh const& mesh)
{
uniform RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, (const void* uniform)mesh.vertices, 0, sizeof(uniform Vertex), mesh.num_vertices);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, (const void* uniform)mesh.triangles, 0, sizeof(uniform Triangle), mesh.num_triangles);
rtcSetGeometryPointQueryFunction(geom, closestPointFunc);
rtcCommitGeometry(geom);
rtcAttachGeometryByID(scene, geom, mesh.geomID);
rtcReleaseGeometry(geom);
}
void addVisualizationSpheres(uniform RTCScene scene, uniform VisualizationData * uniform visData)
{
visData->spheres_geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_SPHERE_POINT);
visData->sphere_vertex_buffer = (Vec4f*)rtcSetNewGeometryBuffer(visData->spheres_geom, RTC_BUFFER_TYPE_VERTEX, 0,
RTC_FORMAT_FLOAT4, sizeof(uniform Vec4f),
2*visData->num_point_queries);
visData->sphere_vertex_buffer[ 0] = make_Vec4f( 0.00f, -0.50f, -0.25f, 0.2f);
visData->sphere_vertex_buffer[ 2] = make_Vec4f(-8.25f, -0.50f, -1.25f, 0.2f);
visData->sphere_vertex_buffer[ 4] = make_Vec4f(-8.00f, -2.00f, -7.75f, 0.2f);
visData->sphere_vertex_buffer[ 6] = make_Vec4f(-0.50f, 1.75f, -7.25f, 0.2f);
visData->sphere_vertex_buffer[ 8] = make_Vec4f( 0.00f, 1.75f, -13.00f, 0.2f);
visData->sphere_vertex_buffer[10] = make_Vec4f( 6.75f, 1.00f, -12.25f, 0.2f);
visData->sphere_vertex_buffer[12] = make_Vec4f( 5.75f, 1.00f, -12.25f, 0.2f);
visData->sphere_vertex_buffer[14] = make_Vec4f( 5.50f, 0.50f, -6.50f, 0.2f);
visData->sphere_vertex_buffer[16] = make_Vec4f( 7.25f, -3.00f, -1.00f, 0.2f);
visData->sphere_vertex_buffer[18] = make_Vec4f(-0.25f, -0.50f, -4.25f, 0.2f);
for (uniform int i = 0; i < visData->num_point_queries; ++i)
visData->sphere_vertex_buffer[2*i+1] = make_Vec4f(0.f);
rtcCommitGeometry(visData->spheres_geom);
rtcAttachGeometryByID(scene, visData->spheres_geom, visData->spheres_geomID);
rtcReleaseGeometry(visData->spheres_geom);
visData->lines_geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
visData->line_vertex_buffer = (Vec4f*)rtcSetNewGeometryBuffer(visData->lines_geom, RTC_BUFFER_TYPE_VERTEX, 0,
RTC_FORMAT_FLOAT4, sizeof(uniform Vec4f),
2*visData->num_point_queries);
visData->line_index_buffer = (unsigned int*)rtcSetNewGeometryBuffer(visData->lines_geom, RTC_BUFFER_TYPE_INDEX, 0,
RTC_FORMAT_UINT, sizeof(uniform unsigned int),
visData->num_point_queries);
for (uniform int i = 0; i < 2*visData->num_point_queries; ++i)
visData->line_vertex_buffer[i] = make_Vec4f(make_Vec3f(visData->sphere_vertex_buffer[i]), 0.05f);
for (uniform int i = 0; i < visData->num_point_queries; ++i)
visData->line_index_buffer[i] = 2*i;
rtcCommitGeometry(visData->lines_geom);
rtcAttachGeometryByID(scene, visData->lines_geom, visData->lines_geomID);
rtcReleaseGeometry(visData->lines_geom);
rtcCommitScene(scene);
}
void updateGeometryAndQueries(uniform float time)
{
uniform const float delta_time = time - g_last_time;
if (g_animate) {
g_animate_time += delta_time;
}
g_last_time = time;
g_instance[0]->local2world
= make_AffineSpace3f_translate(make_Vec3f(7.5f, 0.f, -8.f))
* make_AffineSpace3f_rotate(make_Vec3f(0.f), make_Vec3f(0.f, 1.f, 0.f), M_PI/2.f)
* make_AffineSpace3f_rotate(make_Vec3f(0.f), make_Vec3f(1.f, 0.f, 0.f), 0.2f * sin(g_animate_time));
g_instance[1]->local2world
= make_AffineSpace3f_translate(make_Vec3f(0.f, 3.f + 1.5f*sin(g_animate_time), -9.f))
* make_AffineSpace3f_scale(make_Vec3f(1.f, 2.f, 3.f))
* make_AffineSpace3f_rotate(make_Vec3f(0.f), make_Vec3f(0.f, 1.f, 0.f), M_PI);
uniform AffineSpace3f sheer = make_AffineSpace3f_scale(make_Vec3f(1.2f));
sheer.l.vz.x = cos(g_animate_time*0.75) * 1.0f + 0.5f;
g_instance[2]->local2world
= make_AffineSpace3f_translate(make_Vec3f(-8.5f, 0.f, -7.f))
* make_AffineSpace3f_rotate(make_Vec3f(0.f), make_Vec3f(0.f, 1.f, 0.f), -M_PI/2.f)
* sheer;
/* update scene */
updateInstance(g_sceneUserDefinedInstance, g_instance[0]);
updateInstance(g_sceneUserDefinedInstance, g_instance[1]);
updateInstance(g_sceneUserDefinedInstance, g_instance[2]);
/* set instance transformations */
rtcSetGeometryTransform(g_instanceEmbree[0], 0, RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR, (float*)&g_instance[0]->local2world);
rtcSetGeometryTransform(g_instanceEmbree[1], 0, RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR, (float*)&g_instance[1]->local2world);
rtcSetGeometryTransform(g_instanceEmbree[2], 0, RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR, (float*)&g_instance[2]->local2world);
rtcCommitGeometry(g_instanceEmbree[0]);
rtcCommitGeometry(g_instanceEmbree[1]);
rtcCommitGeometry(g_instanceEmbree[2]);
rtcCommitScene(g_sceneEmbreeInstance);
rtcCommitScene(g_sceneUserDefinedInstance);
g_scene = g_userDefinedInstancing ? g_sceneUserDefinedInstance : g_sceneEmbreeInstance;
uniform VisualizationData * uniform visData = g_userDefinedInstancing ? &g_visDataUserDefinedInstance : &g_visDataEmbreeInstance;
for (int i = 0; i < visData->num_point_queries; ++i)
{
RTCPointQuery query;
query.x = visData->sphere_vertex_buffer[2*i+0].x;
query.y = visData->sphere_vertex_buffer[2*i+0].y;
query.z = visData->sphere_vertex_buffer[2*i+0].z;
query.radius = inf;
query.time = 0.f;
uniform ClosestPointResult result[programCount];
result[programIndex].primID = RTC_INVALID_GEOMETRY_ID;
result[programIndex].geomID = RTC_INVALID_GEOMETRY_ID;
void* userPtr = (void*)&result[programIndex];
uniform RTCPointQueryContext context;
rtcInitPointQueryContext(&context);
rtcPointQueryV(g_scene,
(varying RTCPointQuery* uniform)&query,
&context,
NULL,
&userPtr);
unsigned int primID = result[programIndex].primID;
unsigned int geomID = result[programIndex].geomID;
Vec3f p = result[programIndex].p;
assert(primID != RTC_INVALID_GEOMETRY_ID || geomID != RTC_INVALID_GEOMETRY_ID);
visData->sphere_vertex_buffer[2*i+1].x = p.x;
visData->sphere_vertex_buffer[2*i+1].y = p.y;
visData->sphere_vertex_buffer[2*i+1].z = p.z;
visData->sphere_vertex_buffer[2*i+1].w = 0.2f;
visData->line_vertex_buffer[2*i+1].x = p.x;
visData->line_vertex_buffer[2*i+1].y = p.y;
visData->line_vertex_buffer[2*i+1].z = p.z;
}
rtcCommitScene(g_scene);
}
/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
init_VisualizationData(&g_visDataEmbreeInstance);
init_VisualizationData(&g_visDataUserDefinedInstance);
/* create scene data */
g_triangle_meshes[0] = createPlane(
make_AffineSpace3f_translate(make_Vec3f(0.f, -3.f, 0.f)) *
make_AffineSpace3f_scale(make_Vec3f(10.f, 4.f, 4.f)) *
make_AffineSpace3f_rotate(make_Vec3f(0.f), make_Vec3f(1.f, 0.f, 0.f), M_PI/2) *
make_AffineSpace3f_translate(make_Vec3f(-0.5f, -0.5f, 0.f)),
1, 0);
g_triangle_meshes[1] = createPlane(
make_AffineSpace3f_translate(make_Vec3f(0.f, -1.f, 2.f)) *
make_AffineSpace3f_scale(make_Vec3f(10.f, 4.f, 4.f)) *
make_AffineSpace3f_translate(make_Vec3f(-0.5f, -0.5f, 0.f)),
8, 1);
g_triangle_meshes[2] = createTriangulatedSphere(make_Vec3f(3.f, -2.f, 0.0f), 1.f, 2);
g_triangle_meshes[3] = createCube(make_Vec3f(-3.f, -2.f, 0), 1.0f, 3);
/* compute bounding box of the scene that will be instanced */
uniform Vec3f bbmin = make_Vec3f(inf);
uniform Vec3f bbmax = make_Vec3f(neg_inf);
for (uniform int i = 0; i < 4; ++i) {
uniform TriangleMesh const& mesh = g_triangle_meshes[i];
for (uniform int v = 0; v < mesh.num_vertices; ++v) {
uniform Vertex const& vert = mesh.vertices[v];
bbmin = min(bbmin, make_Vec3f(vert.x, vert.y, vert.z));
bbmax = max(bbmax, make_Vec3f(vert.x, vert.y, vert.z));
}
}
g_sceneEmbreeInstance = rtcNewScene(g_device);
g_sceneUserDefinedInstance = rtcNewScene(g_device);
g_scene0 = rtcNewScene(g_device);
for (uniform int i = 0; i < 4; ++i)
{
addTriangleMeshToScene(g_scene0, g_triangle_meshes[i]);
addTriangleMeshToScene(g_sceneEmbreeInstance, g_triangle_meshes[i]);
addTriangleMeshToScene(g_sceneUserDefinedInstance, g_triangle_meshes[i]);
}
rtcCommitScene(g_scene0);
/* instantiate geometry */
for (uniform int i = 0; i < 3; ++i)
{
g_instance[i] = createInstance(g_sceneUserDefinedInstance, g_scene0, i, bbmin, bbmax);
g_instanceEmbree[i] = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(g_instanceEmbree[i], g_scene0);
rtcSetGeometryTimeStepCount(g_instanceEmbree[i], 1);
rtcAttachGeometryByID(g_sceneEmbreeInstance, g_instanceEmbree[i], 4+i);
rtcReleaseGeometry(g_instanceEmbree[i]);
rtcCommitGeometry(g_instanceEmbree[i]);
}
addVisualizationSpheres(g_sceneEmbreeInstance, &g_visDataEmbreeInstance);
addVisualizationSpheres(g_sceneUserDefinedInstance, &g_visDataUserDefinedInstance);
updateGeometryAndQueries(0.f);
}
inline Vec3f face_forward(const Vec3f& dir, const Vec3f& _Ng) {
const Vec3f Ng = _Ng;
return dot(dir,Ng) < 0.0f ? Ng : neg(Ng);
}
/* task that renders a single screen tile */
Vec3f renderPixelStandard(float x, float y, const uniform ISPCCamera& camera, uniform RayStats& stats)
{
uniform RTCIntersectContext context;
rtcInitIntersectContext(&context);
/* initialize ray */
Ray ray = make_Ray(make_Vec3f(camera.xfm.p),
make_Vec3f(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)),
0.0f, inf, 0.0f, -1,
RTC_INVALID_GEOMETRY_ID, RTC_INVALID_GEOMETRY_ID);
/* intersect ray with scene */
rtcIntersectV(g_scene,&context,RTCRayHit_(ray));
RayStats_addRay(stats);
uniform VisualizationData * uniform visData = g_userDefinedInstancing
? &g_visDataUserDefinedInstance
: &g_visDataEmbreeInstance;
/* shade pixels */
Vec3f color = make_Vec3f(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
if (ray.geomID == visData->spheres_geomID)
{
if (ray.primID % 2 == 0) return make_Vec3f(0.8f, 0.2f, 0.2f);
else return make_Vec3f(1.0f, 1.0f, 1.0f);
}
if (ray.geomID == visData->lines_geomID)
{
return make_Vec3f(0.7f, 0.3f, 0.7f);
}
/* calculate shading normal in world space */
Vec3f Ns = ray.Ng;
if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID)
{
if (g_userDefinedInstancing)
Ns = xfmVector(g_instance[ray.instID[0]]->normal2world, make_Vec3f(Ns));
else
// convert geomID (ray.instID) in the scene to instance idx (-4)
Ns = xfmVector(g_instance[ray.instID[0]-4]->normal2world, make_Vec3f(Ns));
}
Ns = face_forward(ray.dir,normalize(Ns));
color = 0.5f * Ns + make_Vec3f(0.5f);
}
return color;
}
/* renders a single screen tile */
void renderTileStandard(uniform int taskIndex,
uniform int threadIndex,
uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
const uniform unsigned int tileY = taskIndex / numTilesX;
const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
const uniform unsigned int x0 = tileX * TILE_SIZE_X;
const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
if (all(__mask == 0)) continue;
/* calculate pixel color */
Vec3f color = renderPixelStandard((float)x,(float)y,camera,g_stats[threadIndex]);
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
}
/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
export void renderFrameStandard (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
/* render all pixels */
const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
}
/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
updateGeometryAndQueries(time);
}
/* called by the C++ code for cleanup */
export void device_cleanup ()
{
for (uniform int i = 0; i < 4; ++i)
rtcReleaseGeometry(g_triangle_meshes[i].geom);
rtcReleaseScene (g_scene0); g_scene0 = NULL;
rtcReleaseScene (g_sceneEmbreeInstance); g_scene0 = NULL;
rtcReleaseScene (g_sceneUserDefinedInstance); g_scene0 = NULL;
rtcReleaseDevice(g_device); g_device = NULL;
}
|