1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial_device.h"
#include "../common/tutorial/optics.h"
namespace embree {
/* scene data */
RTCScene g_scene = nullptr;
#define NUM_VERTICES 9
#define NUM_CURVES 6
#define W 2.0f
float hair_vertices[NUM_VERTICES][4] =
{
{ -1.0f, 0.0f, - W, 0.2f },
{ +0.0f,-1.0f, +0.0f, 0.2f },
{ +1.0f, 0.0f, + W, 0.2f },
{ -1.0f, 0.0f, + W, 0.2f },
{ +0.0f,+1.0f, +0.0f, 0.6f },
{ +1.0f, 0.0f, - W, 0.2f },
{ -1.0f, 0.0f, - W, 0.2f },
{ +0.0f,-1.0f, +0.0f, 0.2f },
{ +1.0f, 0.0f, + W, 0.2f },
};
float hair_normals[NUM_VERTICES][4] =
{
{ -1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, +1.0f, 0.0f, 0.0f },
{ +1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, -1.0f, 0.0f, 0.0f },
{ -1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, +1.0f, 0.0f, 0.0f },
{ +1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, -1.0f, 0.0f, 0.0f },
{ -1.0f, 0.0f, 0.0f, 0.0f },
};
float hair_vertex_colors[NUM_VERTICES][4] =
{
{ 1.0f, 1.0f, 0.0f, 0.0f },
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 1.0f, 1.0f, 1.0f, 0.0f },
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, 0.0f, 0.0f },
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, 0.0f, 0.0f },
};
unsigned int hair_indices[NUM_CURVES] = {
0, 1, 2, 3, 4, 5
};
unsigned int hair_indices_linear[NUM_CURVES] = {
1, 2, 3, 4, 5, 6
};
char hair_flags_linear[NUM_CURVES] = {
0x3, 0x3, 0x3, 0x3, 0x3, 0x3
};
/* add hair geometry */
unsigned int addCurve (RTCScene scene, RTCGeometryType gtype, const Vec4f& pos)
{
RTCGeometry geom = rtcNewGeometry (g_device, gtype);
rtcSetGeometryVertexAttributeCount(geom,1);
if (gtype == RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE || gtype == RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE || gtype == RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE)
rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, hair_indices_linear,0, sizeof(unsigned int), NUM_CURVES);
else
rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, hair_indices, 0, sizeof(unsigned int), NUM_CURVES);
Vec4f* verts = (Vec4f*)rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, sizeof(Vec4f), NUM_VERTICES);
for (int i = 0; i < NUM_VERTICES; i++) {
verts[i] = pos + Vec4f(hair_vertices[i][0],hair_vertices[i][1], hair_vertices[i][2], hair_vertices[i][3]);
}
if (gtype == RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE ||
gtype == RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE ||
gtype == RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE) {
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_NORMAL, 0, RTC_FORMAT_FLOAT3, hair_normals, 0, sizeof(Vec3fa), NUM_VERTICES);
}
if (gtype == RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE || gtype == RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE) {
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_FLAGS, 0, RTC_FORMAT_UCHAR, hair_flags_linear, 0, sizeof(char), NUM_CURVES);
}
rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE, 0, RTC_FORMAT_FLOAT3, hair_vertex_colors, 0, sizeof(Vec3fa), NUM_VERTICES);
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* adds a ground plane to the scene */
unsigned int addGroundPlane (RTCScene scene_i)
{
/* create a triangulated plane with 2 triangles and 4 vertices */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vertex), 4);
vertices[0].x = -15; vertices[0].y = -2; vertices[0].z = -15;
vertices[1].x = -15; vertices[1].y = -2; vertices[1].z = +15;
vertices[2].x = +15; vertices[2].y = -2; vertices[2].z = -15;
vertices[3].x = +15; vertices[3].y = -2; vertices[3].z = +15;
/* set triangles */
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(Triangle), 2);
triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene_i,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
/* create scene */
g_scene = rtcNewScene(g_device);
/* add ground plane */
addGroundPlane(g_scene);
/* add curves */
addCurve(g_scene, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE, Vec4f(-5.5f, 0.0f, 3.f, 0.0f));
addCurve(g_scene, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE, Vec4f(-2.5f, 0.0f, 3.f, 0.0f));
addCurve(g_scene, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, Vec4f(0.5f, 0.0f, 3.f, 0.0f));
addCurve(g_scene, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, Vec4f(3.5f, 0.0f, 3.f, 0.0f));
addCurve(g_scene, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE, Vec4f(+6.0f, 0.0f, 3.f, 0.0f));
addCurve(g_scene, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE, Vec4f(-4.5f, 0.0f, -2.f, 0.0f));
addCurve(g_scene, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE, Vec4f(-1.5f, 0.0f, -2.f, 0.0f));
addCurve(g_scene, RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE, Vec4f(1.5f, 0.0f, -2.f, 0.0f));
addCurve(g_scene, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE, Vec4f(+4.5f, 0.0f, -2.f, 0.0f));
/* commit changes to scene */
rtcCommitScene (g_scene);
}
/* task that renders a single screen tile */
Vec3fa renderPixelStandard(float x, float y, const ISPCCamera& camera, RayStats& stats)
{
RTCIntersectContext context;
rtcInitIntersectContext(&context);
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);
/* intersect ray with scene */
rtcIntersect1(g_scene,&context,RTCRayHit_(ray));
RayStats_addRay(stats);
/* shade pixels */
Vec3fa color = Vec3fa(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
/* interpolate diffuse color */
Vec3fa diffuse = Vec3fa(1.0f,0.0f,0.0f);
if (ray.geomID > 0)
{
unsigned int geomID = ray.geomID; {
rtcInterpolate0(rtcGetGeometry(g_scene,geomID),ray.primID,ray.u,ray.v,RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE,0,&diffuse.x,3);
}
diffuse = 0.5f*diffuse;
}
/* calculate smooth shading normal */
Vec3fa Ng = normalize(ray.Ng);
color = color + diffuse*0.5f;
Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));
/* initialize shadow ray */
Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf, 0.0f);
/* trace shadow ray */
rtcOccluded1(g_scene,&context,RTCRay_(shadow));
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f) {
Vec3fa r = normalize(reflect(ray.dir,Ng));
float s = pow(clamp(dot(r,lightDir),0.0f,1.0f),10.0f);
float d = clamp(-dot(lightDir,Ng),0.0f,1.0f);
color = color + diffuse*d + 0.5f*Vec3fa(s);
}
}
return color;
}
/* renders a single screen tile */
void renderTileStandard(int taskIndex,
int threadIndex,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0+TILE_SIZE_X,width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0+TILE_SIZE_Y,height);
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
/* calculate pixel color */
Vec3fa color = renderPixelStandard((float)x,(float)y,camera,g_stats[threadIndex]);
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
}
/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
extern "C" void renderFrameStandard (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
});
}
/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
}
/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
rtcReleaseScene (g_scene); g_scene = nullptr;
}
} // namespace embree
|