1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial_device.h"
namespace embree {
/* configuration */
#define EDGE_LEVEL 256.0f
#define ENABLE_SMOOTH_NORMALS 0
/* scene data */
RTCScene g_scene = nullptr;
/* previous camera position */
Vec3fa old_p;
__aligned(16) float cube_vertices[8][4] =
{
{ -1.0f, -1.0f, -1.0f, 0.0f },
{ 1.0f, -1.0f, -1.0f, 0.0f },
{ 1.0f, -1.0f, 1.0f, 0.0f },
{ -1.0f, -1.0f, 1.0f, 0.0f },
{ -1.0f, 1.0f, -1.0f, 0.0f },
{ 1.0f, 1.0f, -1.0f, 0.0f },
{ 1.0f, 1.0f, 1.0f, 0.0f },
{ -1.0f, 1.0f, 1.0f, 0.0f }
};
#if 1
#define NUM_INDICES 24
#define NUM_FACES 6
#define FACE_SIZE 4
unsigned int cube_indices[24] = {
0, 4, 5, 1,
1, 5, 6, 2,
2, 6, 7, 3,
0, 3, 7, 4,
4, 7, 6, 5,
0, 1, 2, 3,
};
unsigned int cube_faces[6] = {
4, 4, 4, 4, 4, 4
};
#else
#define NUM_INDICES 36
#define NUM_FACES 12
#define FACE_SIZE 3
unsigned int cube_indices[36] = {
1, 4, 5, 0, 4, 1,
2, 5, 6, 1, 5, 2,
3, 6, 7, 2, 6, 3,
4, 3, 7, 0, 3, 4,
5, 7, 6, 4, 7, 5,
3, 1, 2, 0, 1, 3
};
unsigned int cube_faces[12] = {
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
};
#endif
float displacement(const Vec3fa& P)
{
float dN = 0.0f;
for (float freq = 1.0f; freq<40.0f; freq*= 2) {
float n = abs(noise(freq*P));
dN += 1.4f*n*n/freq;
}
return dN;
}
float displacement_du(const Vec3fa& P, const Vec3fa& dPdu)
{
const float du = 0.001f;
return (displacement(P+du*dPdu)-displacement(P))/du;
}
float displacement_dv(const Vec3fa& P, const Vec3fa& dPdv)
{
const float dv = 0.001f;
return (displacement(P+dv*dPdv)-displacement(P))/dv;
}
void displacementFunction(const struct RTCDisplacementFunctionNArguments* args)
{
const float* nx = args->Ng_x;
const float* ny = args->Ng_y;
const float* nz = args->Ng_z;
float* px = args->P_x;
float* py = args->P_y;
float* pz = args->P_z;
unsigned int N = args->N;
for (unsigned int i=0; i<N; i++) {
const Vec3fa P = Vec3fa(px[i],py[i],pz[i]);
const Vec3fa Ng = Vec3fa(nx[i],ny[i],nz[i]);
const Vec3fa dP = displacement(P)*Ng;
px[i] += dP.x; py[i] += dP.y; pz[i] += dP.z;
}
}
/* adds a cube to the scene */
unsigned int addCube (RTCScene scene_i)
{
/* create a triangulated cube with 6 quads and 8 vertices */
RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_SUBDIVISION);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, cube_vertices, 0, sizeof(Vec3fa), 8);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, cube_indices, 0, sizeof(unsigned int), NUM_INDICES);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_FACE, 0, RTC_FORMAT_UINT, cube_faces, 0, sizeof(unsigned int), NUM_FACES);
float* level = (float*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_LEVEL, 0, RTC_FORMAT_FLOAT, sizeof(float), NUM_INDICES);
for (size_t i=0; i<NUM_INDICES; i++) level[i] = EDGE_LEVEL;
rtcSetGeometryDisplacementFunction(geom,displacementFunction);
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene_i,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* adds a ground plane to the scene */
unsigned int addGroundPlane (RTCScene scene_i)
{
/* create a triangulated plane with 2 triangles and 4 vertices */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),4);
vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;
/* set triangles */
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2);
triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene_i,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
/* create scene */
g_scene = rtcNewScene(g_device);
rtcSetSceneFlags(g_scene,RTC_SCENE_FLAG_ROBUST);
/* add ground plane */
addGroundPlane(g_scene);
/* add cube */
addCube(g_scene);
/* commit changes to scene */
rtcCommitScene (g_scene);
}
/* task that renders a single screen tile */
Vec3fa renderPixelStandard(float x, float y, const ISPCCamera& camera, RayStats& stats)
{
RTCIntersectContext context;
rtcInitIntersectContext(&context);
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);
/* intersect ray with scene */
rtcIntersect1(g_scene,&context,RTCRayHit_(ray));
RayStats_addRay(stats);
/* shade pixels */
Vec3fa color = Vec3fa(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
Vec3fa diffuse = ray.geomID != 0 ? Vec3fa(0.9f,0.6f,0.5f) : Vec3fa(0.8f,0.0f,0.0f);
color = color + diffuse*0.5f;
Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));
Vec3fa Ng = normalize(ray.Ng);
#if ENABLE_SMOOTH_NORMALS
Vec3fa P = ray.org + ray.tfar*ray.dir;
if (ray.geomID > 0) {
Vec3fa dPdu,dPdv;
unsigned int geomID = ray.geomID; {
rtcInterpolate1(rtcGetGeometry(g_scene,geomID),ray.primID,ray.u,ray.v,RTC_BUFFER_TYPE_VERTEX,0,nullptr,&dPdu.x,&dPdv.x,3);
}
Ng = normalize(cross(dPdu,dPdv));
dPdu = dPdu + Ng*displacement_du(P,dPdu);
dPdv = dPdv + Ng*displacement_dv(P,dPdv);
Ng = normalize(cross(dPdu,dPdv));
}
#endif
/* initialize shadow ray */
Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf, 0.0f);
/* trace shadow ray */
rtcOccluded1(g_scene,&context,RTCRay_(shadow));
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f)
color = color + diffuse*clamp(-(dot(lightDir,Ng)),0.0f,1.0f);
}
return color;
}
/* renders a single screen tile */
void renderTileStandard(int taskIndex,
int threadIndex,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0+TILE_SIZE_X,width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0+TILE_SIZE_Y,height);
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
/* calculate pixel color */
Vec3fa color = renderPixelStandard((float)x,(float)y,camera,g_stats[threadIndex]);
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
}
/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
extern "C" void renderFrameStandard (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
/* render image */
const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
});
}
/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
}
/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
rtcReleaseScene (g_scene); g_scene = nullptr;
}
} // namespace embree
|