1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "instanced_geometry_device.isph"
const uniform int numPhi = 5;
const uniform int numTheta = 2*numPhi;
RTCScene g_scene = NULL;
uniform TutorialData data;
uniform unsigned int createTriangulatedSphere (RTCScene scene, const uniform Vec3f& p, uniform float r)
{
/* create triangle mesh */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* map triangle and vertex buffers */
uniform Vertex* uniform vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(uniform Vertex),numTheta*(numPhi+1));
uniform Triangle* uniform triangles = (uniform Triangle* uniform) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(uniform Triangle),2*numTheta*(numPhi-1));
/* create sphere */
uniform int tri = 0;
const uniform float rcpNumTheta = rcp((uniform float)numTheta);
const uniform float rcpNumPhi = rcp((uniform float)numPhi);
for (uniform int phi=0; phi<=numPhi; phi++)
{
for (uniform int theta=0; theta<numTheta; theta++)
{
const uniform float phif = phi*pi*rcpNumPhi;
const uniform float thetaf = theta*2.0f*pi*rcpNumTheta;
uniform Vertex& v = vertices[phi*numTheta+theta];
v.x = p.x + r*sin(phif)*sin(thetaf);
v.y = p.y + r*cos(phif);
v.z = p.z + r*sin(phif)*cos(thetaf);
}
if (phi == 0) continue;
for (uniform int theta=1; theta<=numTheta; theta++)
{
uniform int p00 = (phi-1)*numTheta+theta-1;
uniform int p01 = (phi-1)*numTheta+theta%numTheta;
uniform int p10 = phi*numTheta+theta-1;
uniform int p11 = phi*numTheta+theta%numTheta;
if (phi > 1) {
triangles[tri].v0 = p10;
triangles[tri].v1 = p01;
triangles[tri].v2 = p00;
tri++;
}
if (phi < numPhi) {
triangles[tri].v0 = p11;
triangles[tri].v1 = p01;
triangles[tri].v2 = p10;
tri++;
}
}
}
rtcCommitGeometry(geom);
uniform unsigned int geomID = rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* creates a ground plane */
uniform unsigned int createGroundPlane (RTCScene scene)
{
/* create a triangulated plane with 2 triangles and 4 vertices */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
uniform Vertex* uniform vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(uniform Vertex),4);
vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;
/* set triangles */
uniform Triangle* uniform triangles = (uniform Triangle* uniform) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(uniform Triangle),2);
triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
rtcCommitGeometry(geom);
uniform unsigned int geomID = rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
TutorialData_Constructor(&data);
/* create scene */
data.g_scene = g_scene = rtcNewScene(g_device);
rtcSetSceneBuildQuality(data.g_scene,RTC_BUILD_QUALITY_LOW);
rtcSetSceneFlags(data.g_scene,RTC_SCENE_FLAG_DYNAMIC);
/* create scene with 4 triangulated spheres */
data.g_scene1 = rtcNewScene(g_device);
createTriangulatedSphere(data.g_scene1,make_Vec3f( 0, 0,+1),0.5f);
createTriangulatedSphere(data.g_scene1,make_Vec3f(+1, 0, 0),0.5f);
createTriangulatedSphere(data.g_scene1,make_Vec3f( 0, 0,-1),0.5f);
createTriangulatedSphere(data.g_scene1,make_Vec3f(-1, 0, 0),0.5f);
rtcCommitScene (data.g_scene1);
/* instantiate geometry */
data.g_instance0 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(data.g_instance0,data.g_scene1);
rtcSetGeometryTimeStepCount(data.g_instance0,1);
data.g_instance1 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(data.g_instance1,data.g_scene1);
rtcSetGeometryTimeStepCount(data.g_instance1,1);
data.g_instance2 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(data.g_instance2,data.g_scene1);
rtcSetGeometryTimeStepCount(data.g_instance2,1);
data.g_instance3 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(data.g_instance3,data.g_scene1);
rtcSetGeometryTimeStepCount(data.g_instance3,1);
rtcAttachGeometry(data.g_scene,data.g_instance0);
rtcAttachGeometry(data.g_scene,data.g_instance1);
rtcAttachGeometry(data.g_scene,data.g_instance2);
rtcAttachGeometry(data.g_scene,data.g_instance3);
rtcReleaseGeometry(data.g_instance0);
rtcReleaseGeometry(data.g_instance1);
rtcReleaseGeometry(data.g_instance2);
rtcReleaseGeometry(data.g_instance3);
createGroundPlane(data.g_scene);
/* set all colors */
data.colors[0][0] = make_Vec3f(0.25f, 0.f, 0.f);
data.colors[0][1] = make_Vec3f(0.50f, 0.f, 0.f);
data.colors[0][2] = make_Vec3f(0.75f, 0.f, 0.f);
data.colors[0][3] = make_Vec3f(1.00f, 0.f, 0.f);
data.colors[1][0] = make_Vec3f(0.f, 0.25f, 0.f);
data.colors[1][1] = make_Vec3f(0.f, 0.50f, 0.f);
data.colors[1][2] = make_Vec3f(0.f, 0.75f, 0.f);
data.colors[1][3] = make_Vec3f(0.f, 1.00f, 0.f);
data.colors[2][0] = make_Vec3f(0.f, 0.f, 0.25f);
data.colors[2][1] = make_Vec3f(0.f, 0.f, 0.50f);
data.colors[2][2] = make_Vec3f(0.f, 0.f, 0.75f);
data.colors[2][3] = make_Vec3f(0.f, 0.f, 1.00f);
data.colors[3][0] = make_Vec3f(0.25f, 0.25f, 0.f);
data.colors[3][1] = make_Vec3f(0.50f, 0.50f, 0.f);
data.colors[3][2] = make_Vec3f(0.75f, 0.75f, 0.f);
data.colors[3][3] = make_Vec3f(1.00f, 1.00f, 0.f);
}
/* task that renders a single screen tile */
Vec3f renderPixelStandard(const uniform TutorialData& data, float x, float y, const uniform ISPCCamera& camera, uniform RayStats& stats)
{
uniform RTCIntersectContext context;
rtcInitIntersectContext(&context);
/* initialize ray */
Ray ray = make_Ray(make_Vec3f(camera.xfm.p), make_Vec3f(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);
/* intersect ray with scene */
rtcIntersectV(data.g_scene,&context,RTCRayHit_(ray));
RayStats_addRay(stats);
/* shade pixels */
Vec3f color = make_Vec3f(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
/* calculate shading normal in world space */
Vec3f Ns = ray.Ng;
if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID)
Ns = xfmVector(data.normal_xfm[ray.instID[0]],Ns);
Ns = normalize(Ns);
/* calculate diffuse color of geometries */
Vec3f diffuse = make_Vec3f(1,1,1);
if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID)
diffuse = data.colors[ray.instID[0]][ray.geomID];
color = color + diffuse*0.5;
/* initialize shadow ray */
Vec3f lightDir = normalize(make_Vec3f(-1,-1,-1));
Ray shadow = make_Ray(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf);
/* trace shadow ray */
rtcOccludedV(data.g_scene,&context,RTCRay_(shadow));
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f)
color = color + diffuse*clamp(-dot(lightDir,Ns),0.0f,1.0f);
}
return color;
}
/* renders a single screen tile */
void renderTileStandard(uniform int taskIndex,
uniform int threadIndex,
uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
const uniform unsigned int tileY = taskIndex / numTilesX;
const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
const uniform unsigned int x0 = tileX * TILE_SIZE_X;
const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
/* calculate pixel color */
Vec3f color = renderPixelStandard(data, (float)x,(float)y,camera,g_stats[threadIndex]);
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
}
/* renders a single screen tile */
void renderTileStandardStream(uniform int taskIndex,
uniform int threadIndex,
uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
const uniform unsigned int tileY = taskIndex / numTilesX;
const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
const uniform unsigned int x0 = tileX * TILE_SIZE_X;
const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);
uniform RayStats& stats = g_stats[threadIndex];
Ray primary_stream[TILE_SIZE_X*TILE_SIZE_Y];
Ray shadow_stream[TILE_SIZE_X*TILE_SIZE_Y];
Vec3f color_stream[TILE_SIZE_X*TILE_SIZE_Y];
bool valid_stream[TILE_SIZE_X*TILE_SIZE_Y];
/* generate stream of primary rays */
uniform int N = 0;
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
/* ISPC workaround for mask == 0 */
if (all(__mask == 0)) continue;
/* initialize variables */
color_stream[N] = make_Vec3f(0.0f);
bool mask = __mask; unmasked { valid_stream[N] = mask; }
/* initialize ray */
Ray& primary = primary_stream[N];
mask = __mask; unmasked { // invalidates inactive rays
primary.tnear = mask ? 0.0f : (float)(pos_inf);
primary.tfar = mask ? (float)(inf) : (float)(neg_inf);
}
init_Ray(primary, make_Vec3f(camera.xfm.p), make_Vec3f(normalize((float)x*camera.xfm.l.vx + (float)y*camera.xfm.l.vy + camera.xfm.l.vz)), primary.tnear, primary.tfar);
N++;
RayStats_addRay(stats);
}
Vec3f lightDir = normalize(make_Vec3f(-1,-1,-1));
/* trace rays */
uniform RTCIntersectContext primary_context;
rtcInitIntersectContext(&primary_context);
primary_context.flags = g_iflags_coherent;
rtcIntersectVM(data.g_scene,&primary_context,(varying RTCRayHit* uniform)&primary_stream,N,sizeof(Ray));
/* terminate rays and update color */
N = -1;
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
N++;
/* ISPC workaround for mask == 0 */
if (all(__mask == 0)) continue;
/* invalidate shadow rays by default */
Ray& shadow = shadow_stream[N];
unmasked {
shadow.tnear = (float)(pos_inf);
shadow.tfar = (float)(neg_inf);
}
/* ignore invalid rays */
if (valid_stream[N] == false) continue;
/* terminate rays that hit nothing */
if (primary_stream[N].geomID == RTC_INVALID_GEOMETRY_ID) {
valid_stream[N] = false;
continue;
}
/* calculate shading normal in world space */
Ray& primary = primary_stream[N];
Vec3f Ns = primary.Ng;
if (primary.instID[0] != RTC_INVALID_GEOMETRY_ID)
Ns = xfmVector(data.normal_xfm[primary.instID[0]],Ns);
Ns = normalize(Ns);
/* calculate diffuse color of geometries */
Vec3f diffuse = make_Vec3f(1,1,1);
if (primary.instID[0] != RTC_INVALID_GEOMETRY_ID)
diffuse = data.colors[primary.instID[0]][primary.geomID];
color_stream[N] = color_stream[N] + diffuse*0.5;
/* initialize shadow ray tnear/tfar */
bool mask = __mask; unmasked {
shadow.tnear = mask ? 0.001f : (float)(pos_inf);
shadow.tfar = mask ? (float)(inf) : (float)(neg_inf);
}
init_Ray(shadow, primary.org + primary.tfar*primary.dir, neg(lightDir), shadow.tnear, shadow.tfar);
RayStats_addShadowRay(stats);
}
N++;
/* trace shadow rays */
uniform RTCIntersectContext shadow_context;
rtcInitIntersectContext(&shadow_context);
shadow_context.flags = g_iflags_coherent;
rtcOccludedVM(data.g_scene,&shadow_context,(varying RTCRay* uniform)&shadow_stream,N,sizeof(Ray));
/* add light contribution */
N = -1;
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
N++;
/* ISPC workaround for mask == 0 */
if (all(__mask == 0)) continue;
/* ignore invalid rays */
if (valid_stream[N] == false) continue;
/* calculate shading normal in world space */
Ray& primary = primary_stream[N];
Vec3f Ns = primary.Ng;
if (primary.instID[0] != RTC_INVALID_GEOMETRY_ID)
Ns = xfmVector(data.normal_xfm[primary.instID[0]],Ns);
Ns = normalize(Ns);
/* calculate diffuse color of geometries */
Vec3f diffuse = make_Vec3f(1,1,1);
if (primary.instID[0] != RTC_INVALID_GEOMETRY_ID)
diffuse = data.colors[primary.instID[0]][primary.geomID];
/* add light contrinution */
Ray& shadow = shadow_stream[N];
if (shadow.tfar >= 0.0f) {
color_stream[N] = color_stream[N] + diffuse*clamp(-dot(lightDir,Ns),0.0f,1.0f);
}
}
N++;
/* framebuffer writeback */
N = 0;
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
/* ISPC workaround for mask == 0 */
if (all(__mask == 0)) continue;
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color_stream[N].x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color_stream[N].y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color_stream[N].z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
N++;
}
}
/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
if (g_mode == MODE_NORMAL)
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
else
renderTileStandardStream(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
export void renderFrameStandard (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
/* render all pixels */
const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
}
/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
uniform float t0 = 0.7f*time;
uniform float t1 = 1.5f*time;
/* rotate instances around themselves */
uniform LinearSpace3f xfm;
xfm.vx = make_Vec3f(cos(t1),0,sin(t1));
xfm.vy = make_Vec3f(0,1,0);
xfm.vz = make_Vec3f(-sin(t1),0,cos(t1));
/* calculate transformations to move instances in cirle */
for (uniform int i=0; i<4; i++) {
uniform float t = t0+i*2.0f*M_PI/4.0f;
data.instance_xfm[i] = make_AffineSpace3f(xfm,2.2f*make_Vec3f(+cos(t),0.0f,+sin(t)));
}
/* calculate transformations to properly transform normals */
for (uniform int i=0; i<4; i++)
data.normal_xfm[i] = transposed(rcp(data.instance_xfm[i].l));
/* set instance transformations */
rtcSetGeometryTransform(data.g_instance0,0,RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,(uniform float* uniform)&data.instance_xfm[0]);
rtcSetGeometryTransform(data.g_instance1,0,RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,(uniform float* uniform)&data.instance_xfm[1]);
rtcSetGeometryTransform(data.g_instance2,0,RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,(uniform float* uniform)&data.instance_xfm[2]);
rtcSetGeometryTransform(data.g_instance3,0,RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,(uniform float* uniform)&data.instance_xfm[3]);
/* update scene */
rtcCommitGeometry(data.g_instance0);
rtcCommitGeometry(data.g_instance1);
rtcCommitGeometry(data.g_instance2);
rtcCommitGeometry(data.g_instance3);
rtcCommitScene (data.g_scene);
}
/* called by the C++ code for cleanup */
export void device_cleanup ()
{
TutorialData_Destructor(&data);
}
|