File: lazy_geometry_device.ispc

package info (click to toggle)
embree 3.12.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,412 kB
  • sloc: cpp: 173,822; xml: 3,737; ansic: 2,955; python: 1,628; sh: 480; makefile: 193; csh: 42
file content (376 lines) | stat: -rw-r--r-- 14,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "../common/tutorial/tutorial_device.isph"

const uniform int numPhi = 20;
const uniform int numTheta = 2*numPhi;
const uniform int numSpheres = 64;

/* state of the lazy geometry */
enum LazyState
{
  LAZY_INVALID = 0,   // the geometry is not yet created
  LAZY_CREATE = 1,    // one thread is creating the geometry
  LAZY_COMMIT = 2,    // possible multiple threads are committing the geometry
  LAZY_VALID = 3      // the geometry is created
};

/* representation for our lazy geometry */
struct LazyGeometry
{
  ALIGNED_STRUCT_(16)
  RTCGeometry geometry;
  uniform LazyState state;
  RTCScene object;
  uniform int userID;
  Vec3f center;
  float radius;
};

uniform LazyGeometry* uniform g_objects[numSpheres];

unmasked void instanceBoundsFunc(const struct RTCBoundsFunctionArguments* uniform args)
{
  const uniform LazyGeometry* uniform instance = (const uniform LazyGeometry* uniform) args->geometryUserPtr;
  uniform RTCBounds* uniform bounds_o = args->bounds_o;
  uniform Vec3f lower = instance->center-make_Vec3f(instance->radius);
  uniform Vec3f upper = instance->center+make_Vec3f(instance->radius);
  bounds_o->lower_x = lower.x;
  bounds_o->lower_y = lower.y;
  bounds_o->lower_z = lower.z;
  bounds_o->upper_x = upper.x;
  bounds_o->upper_y = upper.y;
  bounds_o->upper_z = upper.z;
}

uniform unsigned int createTriangulatedSphere (RTCScene scene, const uniform Vec3f& p, uniform float r)
{
  /* create triangle mesh */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* map triangle and vertex buffers */
  uniform Vertex* uniform vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(uniform Vertex), numTheta*(numPhi+1));
  uniform Triangle* uniform triangles = (uniform Triangle* uniform) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(uniform Triangle), 2*numTheta*(numPhi-1));

  /* create sphere */
  uniform int tri = 0;
  const uniform float rcpNumTheta = rcp((uniform float)numTheta);
  const uniform float rcpNumPhi   = rcp((uniform float)numPhi);
  for (uniform int phi=0; phi<=numPhi; phi++)
  {
    for (uniform int theta=0; theta<numTheta; theta++)
    {
      const uniform float phif   = phi*pi*rcpNumPhi;
      const uniform float thetaf = theta*2.0f*pi*rcpNumTheta;

      uniform Vertex& v = vertices[phi*numTheta+theta];
      v.x = p.x + r*sin(phif)*sin(thetaf);
      v.y = p.y + r*cos(phif);
      v.z = p.z + r*sin(phif)*cos(thetaf);
    }
    if (phi == 0) continue;

    for (uniform int theta=1; theta<=numTheta; theta++)
    {
      uniform int p00 = (phi-1)*numTheta+theta-1;
      uniform int p01 = (phi-1)*numTheta+theta%numTheta;
      uniform int p10 = phi*numTheta+theta-1;
      uniform int p11 = phi*numTheta+theta%numTheta;

      if (phi > 1) {
        triangles[tri].v0 = p10;
        triangles[tri].v1 = p01;
        triangles[tri].v2 = p00;
        tri++;
      }

      if (phi < numPhi) {
        triangles[tri].v0 = p11;
        triangles[tri].v1 = p01;
        triangles[tri].v2 = p10;
        tri++;
      }
    }
  }

  rtcCommitGeometry(geom);
  uniform unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

void lazyCreate(uniform LazyGeometry* uniform instance)
{
  const bool join_commit_supported = rtcGetDeviceProperty(g_device,RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED);
  const bool parallel_commit_supported = rtcGetDeviceProperty(g_device,RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED);
    
  /* one thread will switch the object from the LAZY_INVALID state to the LAZY_CREATE state */
  if (atomic_compare_exchange_global((uniform int32*)&instance->state,LAZY_INVALID,LAZY_CREATE) == 0)
  {
    /* create the geometry */
    //print("creating sphere %i (lazy)\n",instance->userID);
    instance->object = rtcNewScene(g_device);
    createTriangulatedSphere(instance->object,instance->center,instance->radius);

    /* when no parallel commit mode at all is supported let only a single thread build */
    if (!join_commit_supported && !parallel_commit_supported)
      rtcCommitScene(instance->object);

    /* now switch to the LAZY_COMMIT state */
    memory_barrier();
    instance->state = LAZY_COMMIT;
  }
  else
  {
    /* wait until the geometry got created */
    while (atomic_compare_exchange_global((uniform int32*)&instance->state,10,11) < LAZY_COMMIT) {
      // instead of actively spinning here, best use a condition to let the thread sleep, or let it help in the creation stage
    }
  }

  /* if we support rtcCommit to get called from multiple threads, then this should be preferred for performance reasons */
  if (parallel_commit_supported)
    rtcCommitScene(instance->object);
  
  /* otherwise we could fallback to rtcJoinCommit scene, which has lower performance */
  else if (join_commit_supported)
    rtcJoinCommitScene(instance->object);

  /* switch to LAZY_VALID state */
  atomic_compare_exchange_global((uniform int32*)&instance->state,LAZY_COMMIT,LAZY_VALID);
}

void eagerCreate(uniform LazyGeometry* uniform instance)
{
  //print("creating sphere %i (eager)\n",instance->userID);
  instance->object = rtcNewScene(g_device);
  createTriangulatedSphere(instance->object,instance->center,instance->radius);
  rtcCommitScene(instance->object);
  instance->state = LAZY_VALID;
}

unmasked void instanceIntersectFuncN(const RTCIntersectFunctionNArguments* uniform args)
{
  const uniform int* uniform valid = args->valid;
  void* uniform ptr  = args->geometryUserPtr;
  uniform RTCIntersectContext* uniform context = args->context;
  RTCRayHitN* uniform rays = (RTCRayHitN* uniform)args->rayhit;
  assert(args->N == programCount);
  uniform LazyGeometry* uniform instance = (uniform LazyGeometry* uniform)ptr;

  if (!valid[programIndex])
    return;
  
  varying Ray *uniform ray = (varying Ray *uniform)rays;
  
  /* create the object if it is not yet created */
  if (instance->state != LAZY_VALID)
    lazyCreate(instance);
  
  /* trace ray inside object */
  const unsigned int geomID = ray->geomID;
  ray->geomID = RTC_INVALID_GEOMETRY_ID;
  rtcIntersectV(instance->object,context,RTCRayHit_(*ray));
  if (ray->geomID == RTC_INVALID_GEOMETRY_ID) ray->geomID = geomID;
  else ray->instID[0] = instance->userID;
}

unmasked void instanceOccludedFuncN(const RTCOccludedFunctionNArguments* uniform args)
{
  const uniform int* uniform valid = args->valid;
  void* uniform ptr  = args->geometryUserPtr;
   uniform RTCIntersectContext* uniform context = args->context;
   RTCRayHitN* uniform rays = (RTCRayHitN* uniform)args->ray;
  assert(args->N == programCount);
  uniform LazyGeometry* uniform instance = (uniform LazyGeometry* uniform)ptr;

  if (!valid[programIndex])
    return;
  
  varying Ray *uniform ray = (varying Ray *uniform)rays;
  /* create the object if it is not yet created */
  if (instance->state != LAZY_VALID)
    lazyCreate(instance);
  
  /* trace ray inside object */
  rtcOccludedV(instance->object,context,RTCRay_(*ray));
}

uniform LazyGeometry* uniform createLazyObject (RTCScene scene, uniform int userID, const uniform Vec3f& center, const uniform float radius)
{
  uniform LazyGeometry* uniform instance = uniform new uniform LazyGeometry;
  instance->state = LAZY_INVALID;
  instance->object = NULL;
  instance->userID = userID;
  instance->center = center;
  instance->radius = radius;
  instance->geometry = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
  rtcSetGeometryUserPrimitiveCount(instance->geometry,1);
  rtcSetGeometryUserData(instance->geometry,instance);
  rtcSetGeometryBoundsFunction(instance->geometry,instanceBoundsFunc,NULL);
  rtcSetGeometryIntersectFunction(instance->geometry,instanceIntersectFuncN);
  rtcSetGeometryOccludedFunction (instance->geometry,instanceOccludedFuncN);
  rtcCommitGeometry(instance->geometry);
  rtcAttachGeometry(scene,instance->geometry);
  rtcReleaseGeometry(instance->geometry);

  /* if we do not support the join mode then Embree also does not
   * support lazy build */
  if (!rtcGetDeviceProperty(g_device,RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED))
    eagerCreate(instance);

  return instance;
}

/* creates a ground plane */
uniform unsigned int createGroundPlane (RTCScene scene)
{
  /* create a triangulated plane with 2 triangles and 4 vertices */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* set vertices */
  uniform Vertex* uniform vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(uniform Vertex), 4);
  vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
  vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
  vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
  vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;

  /* set triangles */
  uniform Triangle* uniform triangles = (uniform Triangle* uniform) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(uniform Triangle), 2);
  triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
  triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;

  rtcCommitGeometry(geom);
  uniform unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* scene data */
RTCScene g_scene  = NULL;

/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
  /* create scene */
  g_scene = rtcNewScene(g_device);
  
  /* instantiate geometry */
  createGroundPlane(g_scene);
  for (uniform int i=0; i<numSpheres; i++) {
    uniform float a = 2.0f*M_PI*(uniform float)i/(uniform float)numSpheres;
    g_objects[i] = createLazyObject(g_scene,i,10.0f*make_Vec3f(cosf(a),0,sinf(a)),1);
  }
  rtcCommitScene (g_scene);
}

/* task that renders a single screen tile */
Vec3f renderPixelStandard(float x, float y, const uniform ISPCCamera& camera, uniform RayStats& stats)
{
  uniform RTCIntersectContext context;
  rtcInitIntersectContext(&context);
  
  /* initialize ray */
  Ray ray = make_Ray(make_Vec3f(camera.xfm.p), make_Vec3f(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf, 0.0f, -1, RTC_INVALID_GEOMETRY_ID, RTC_INVALID_GEOMETRY_ID);
  ray.instID[0] = 4;

  /* intersect ray with scene */
  rtcIntersectV(g_scene,&context,RTCRayHit_(ray));
  RayStats_addRay(stats);

  /* shade pixels */
  Vec3f color = make_Vec3f(0.0f);
  if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
  {
    Vec3f diffuse = make_Vec3f(1.0f);
    color = color + diffuse*0.5;
    Vec3f lightDir = normalize(make_Vec3f(-1,-1,-1));

    /* initialize shadow ray */
    Ray shadow = make_Ray(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf);

    /* trace shadow ray */
    rtcOccludedV(g_scene,&context,RTCRay_(shadow));
    RayStats_addShadowRay(stats);

    /* add light contribution */
    if (shadow.tfar >= 0.0f)
      color = color + diffuse*clamp(-dot(lightDir,normalize(ray.Ng)),0.0f,1.0f);
  }
  return color;
}

/* renders a single screen tile */
void renderTileStandard(uniform int taskIndex,
                        uniform int threadIndex,
                        uniform int* uniform pixels,
                        const uniform unsigned int width,
                        const uniform unsigned int height,
                        const uniform float time,
                        const uniform ISPCCamera& camera,
                        const uniform int numTilesX,
                        const uniform int numTilesY)
{
  const uniform unsigned int tileY = taskIndex / numTilesX;
  const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
  const uniform unsigned int x0 = tileX * TILE_SIZE_X;
  const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
  const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  foreach_tiled (y = y0 ... y1, x = x0 ... x1)
  {
    /* calculate pixel color */
    Vec3f color = renderPixelStandard((float)x,(float)y,camera,g_stats[threadIndex]);

    /* write color to framebuffer */
    unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
    unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
    unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
    pixels[y*width+x] = (b << 16) + (g << 8) + r;
  }
}

/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
                         const uniform unsigned int width,
                         const uniform unsigned int height,
                         const uniform float time,
                         const uniform ISPCCamera& camera,
                         const uniform int numTilesX,
                         const uniform int numTilesY)
{
  renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}

export void renderFrameStandard (uniform int* uniform pixels,
                          const uniform unsigned int width,
                          const uniform unsigned int height,
                          const uniform float time,
                          const uniform ISPCCamera& camera)
{
  /* render all pixels */
  const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
}

/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
                           const uniform unsigned int width,
                           const uniform unsigned int height,
                           const uniform float time,
                           const uniform ISPCCamera& camera)
{
}

/* called by the C++ code for cleanup */
export void device_cleanup ()
{
  for (uniform int i=0; i<numSpheres; i++) {
    if (g_objects[i]->object) rtcReleaseScene(g_objects[i]->object);
    delete g_objects[i];
  }
  rtcReleaseScene (g_scene); g_scene = NULL;
}