File: motion_blur_geometry_device.cpp

package info (click to toggle)
embree 3.12.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,412 kB
  • sloc: cpp: 173,822; xml: 3,737; ansic: 2,955; python: 1,628; sh: 480; makefile: 193; csh: 42
file content (732 lines) | stat: -rw-r--r-- 28,255 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "motion_blur_geometry_device.h"

namespace embree {

/* scene data */
RTCScene g_scene = nullptr;
TutorialData data;

extern "C" bool g_changed;
extern "C" float g_time;
extern "C" unsigned int g_num_time_steps;
extern "C" unsigned int g_num_time_steps2;


__aligned(16) float cube_vertices[8][4] =
{
  { -1.0f, -1.0f, -1.0f, 0.0f },
  {  1.0f, -1.0f, -1.0f, 0.0f },
  {  1.0f, -1.0f,  1.0f, 0.0f },
  { -1.0f, -1.0f,  1.0f, 0.0f },
  { -1.0f,  1.0f, -1.0f, 0.0f },
  {  1.0f,  1.0f, -1.0f, 0.0f },
  {  1.0f,  1.0f,  1.0f, 0.0f },
  { -1.0f,  1.0f,  1.0f, 0.0f }
};

unsigned int cube_triangle_indices[36] = {
  1, 4, 5,  0, 4, 1,
  2, 5, 6,  1, 5, 2,
  3, 6, 7,  2, 6, 3,
  4, 3, 7,  0, 3, 4,
  5, 7, 6,  4, 7, 5,
  3, 1, 2,  0, 1, 3
};

unsigned int cube_quad_indices[24] = {
  0, 4, 5, 1,
  1, 5, 6, 2,
  2, 6, 7, 3,
  0, 3, 7, 4,
  4, 7, 6, 5,
  0, 1, 2, 3,
};

__aligned(16) float cube_vertex_crease_weights[8] = {
  inf, inf,inf, inf, inf, inf, inf, inf
};

__aligned(16) unsigned int cube_vertex_crease_indices[8] = {
  0,1,2,3,4,5,6,7
};

__aligned(16) float cube_edge_crease_weights[12] = {
  inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf
};

__aligned(16) unsigned int cube_edge_crease_indices[24] =
{
  0,1, 1,2, 2,3, 3,0,
  4,5, 5,6, 6,7, 7,4,
  0,4, 1,5, 2,6, 3,7,
};

#define NUM_INDICES 24
#define NUM_FACES 6
#define FACE_SIZE 4

unsigned int cube_quad_faces[6] = {
  4, 4, 4, 4, 4, 4
};

unsigned int addSphere(RTCScene scene, const Vec3fa& pos, RTCGeometryType type, unsigned int num_time_steps)
{
  RTCGeometry geom = rtcNewGeometry(g_device, type);
  rtcSetGeometryTimeStepCount(geom, num_time_steps);

  for (unsigned int t = 0; t < num_time_steps; t++)
  {
    RTCBufferType bufType = RTC_BUFFER_TYPE_VERTEX;
    Vec3ff *vertex = (Vec3ff*)rtcSetNewGeometryBuffer(geom, bufType, t, RTC_FORMAT_FLOAT4, sizeof(Vec3ff), 1);
    AffineSpace3fa rotation = AffineSpace3fa::rotate(Vec3fa(0,0,0), Vec3fa(0,1,0), 2.0f*float(M_PI)*(float)t/(float)(num_time_steps-1));
    *vertex = Vec3ff(xfmPoint(rotation, Vec3fa(1, 0, 0)) + pos);
    vertex->w = 1.f;

    if (type == RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT) {
      Vec3fa *normal = (Vec3fa*)rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_NORMAL, t, RTC_FORMAT_FLOAT3, sizeof(Vec3fa), 1);
      normal[0] = Vec3fa(1, 1, 0);
      normal[0] = normalize(normal[0]);
    }
  }

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene, geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* adds a cube to the scene */
unsigned int addTriangleCube (RTCScene scene, const Vec3fa& pos, unsigned int num_time_steps)
{
  /* create a triangulated cube with 12 triangles and 8 vertices */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
  rtcSetGeometryTimeStepCount(geom,num_time_steps);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, cube_triangle_indices, 0, 3*sizeof(unsigned int), 12);

  for (unsigned int t=0; t<num_time_steps; t++)
  {
    RTCBufferType bufType = RTC_BUFFER_TYPE_VERTEX;
    Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom,bufType,t,RTC_FORMAT_FLOAT3,sizeof(Vec3fa), 8);

    AffineSpace3fa rotation = AffineSpace3fa::rotate(Vec3fa(0,0,0),Vec3fa(0,1,0),2.0f*float(M_PI)*(float)t/(float)(num_time_steps-1));
    AffineSpace3fa scale = AffineSpace3fa::scale(Vec3fa(2.0f,1.0f,1.0f));

    for (int i=0; i<8; i++) {
      Vec3fa v = Vec3fa(cube_vertices[i][0],cube_vertices[i][1],cube_vertices[i][2]);
      vertices[i] = Vec3fa(xfmPoint(rotation*scale,v)+pos);
    }
  }

  /* create face color array */
  data.face_colors[0] = Vec3fa(1,0,0);
  data.face_colors[1] = Vec3fa(1,0,0);
  data.face_colors[2] = Vec3fa(0,1,0);
  data.face_colors[3] = Vec3fa(0,1,0);
  data.face_colors[4] = Vec3fa(0.5f);
  data.face_colors[5] = Vec3fa(0.5f);
  data.face_colors[6] = Vec3fa(1.0f);
  data.face_colors[7] = Vec3fa(1.0f);
  data.face_colors[8] = Vec3fa(0,0,1);
  data.face_colors[9] = Vec3fa(0,0,1);
  data.face_colors[10] = Vec3fa(1,1,0);
  data.face_colors[11] = Vec3fa(1,1,0);

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* adds a cube to the scene */
unsigned int addQuadCube (RTCScene scene, const Vec3fa& pos, unsigned int num_time_steps)
{
  /* create a quad cube with 6 quads and 8 vertices */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_QUAD);
  rtcSetGeometryTimeStepCount(geom,num_time_steps);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT4, cube_quad_indices, 0, 4*sizeof(unsigned int), 6);

  for (unsigned int t=0; t<num_time_steps; t++)
  {
    RTCBufferType bufType = RTC_BUFFER_TYPE_VERTEX;
    Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom,bufType,t,RTC_FORMAT_FLOAT3,sizeof(Vec3fa), 8);

    AffineSpace3fa rotation = AffineSpace3fa::rotate(Vec3fa(0,0,0),Vec3fa(0,1,0),2.0f*float(M_PI)*(float)t/(float)(num_time_steps-1));
    AffineSpace3fa scale = AffineSpace3fa::scale(Vec3fa(2.0f,1.0f,1.0f));

    for (int i=0; i<8; i++) {
      Vec3fa v = Vec3fa(cube_vertices[i][0],cube_vertices[i][1],cube_vertices[i][2]);
      vertices[i] = Vec3fa(xfmPoint(rotation*scale,v)+pos);
    }
  }

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* adds a subdivision cube to the scene */
unsigned int addSubdivCube (RTCScene scene, const Vec3fa& pos, unsigned int num_time_steps)
{
  /* create a triangulated cube with 6 quads and 8 vertices */
  RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_SUBDIVISION);
  rtcSetGeometryTimeStepCount(geom,num_time_steps);

  //rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, cube_vertices, 0, sizeof(Vec3fa), 8);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, cube_quad_indices, 0, sizeof(unsigned int), NUM_INDICES);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_FACE,  0, RTC_FORMAT_UINT, cube_quad_faces,   0, sizeof(unsigned int), NUM_FACES);

  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_EDGE_CREASE_INDEX,  0, RTC_FORMAT_UINT2, cube_edge_crease_indices,  0, 2*sizeof(unsigned int), 0);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT, 0, RTC_FORMAT_FLOAT, cube_edge_crease_weights,  0, sizeof(float),          0);

  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX,  0, RTC_FORMAT_UINT,  cube_vertex_crease_indices,0, sizeof(unsigned int), 0);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT, 0, RTC_FORMAT_FLOAT, cube_vertex_crease_weights,0, sizeof(float),        0);

  float* level = (float*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_LEVEL, 0, RTC_FORMAT_FLOAT, sizeof(float), NUM_INDICES);
  for (unsigned int i=0; i<NUM_INDICES; i++) level[i] = 16.0f;

  for (unsigned int t=0; t<num_time_steps; t++)
  {
    RTCBufferType bufType = RTC_BUFFER_TYPE_VERTEX;
    Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom,bufType,t,RTC_FORMAT_FLOAT3,sizeof(Vec3fa),8);

    AffineSpace3fa rotation = AffineSpace3fa::rotate(Vec3fa(0,0,0),Vec3fa(0,1,0),2.0f*float(M_PI)*(float)t/(float)(num_time_steps-1));
    AffineSpace3fa scale = AffineSpace3fa::scale(Vec3fa(2.0f,1.0f,1.0f));

    for (int i=0; i<8; i++) {
      Vec3fa v = Vec3fa(cube_vertices[i][0],cube_vertices[i][1],cube_vertices[i][2]);
      vertices[i] = Vec3fa(xfmPoint(rotation*scale,v)+pos);
    }
  }

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* add hair geometry */
unsigned int addCurve (RTCScene scene, const Vec3fa& pos, RTCGeometryType type, unsigned int num_time_steps)
{
  RTCGeometry geom = rtcNewGeometry(g_device, type);
  rtcSetGeometryTimeStepCount(geom,num_time_steps);
  rtcSetGeometryTessellationRate (geom,16.0f);

  Vec3fa* bspline = (Vec3fa*) alignedMalloc(16*sizeof(Vec3fa),16);
  for (int i=0; i<16; i++) {
    float f = (float)(i)/16.0f;
    bspline[i] = Vec3fa(2.0f*f-1.0f,sin(12.0f*f),cos(12.0f*f));
  }

  for (unsigned int t=0; t<num_time_steps; t++)
  {
    RTCBufferType bufType = RTC_BUFFER_TYPE_VERTEX;
    Vec3ff* vertices = (Vec3ff*) rtcSetNewGeometryBuffer(geom,bufType,t,RTC_FORMAT_FLOAT4,sizeof(Vec3ff),16);

    AffineSpace3fa rotation = AffineSpace3fa::rotate(Vec3fa(0,0,0),Vec3fa(0,1,0),2.0f*float(M_PI)*(float)t/(float)(num_time_steps-1));
    AffineSpace3fa scale = AffineSpace3fa::scale(Vec3fa(2.0f,1.0f,1.0f));

    for (int i=0; i<16; i++)
      vertices[i] = Vec3ff(xfmPoint(rotation*scale,bspline[i])+pos,0.2f);
  }

  int* indices = (int*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT,sizeof(int),13);
  for (int i=0; i<13; i++) indices[i] = i;

  alignedFree(bspline);

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* add line geometry */
unsigned int addLines (RTCScene scene, const Vec3fa& pos, unsigned int num_time_steps)
{
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
  rtcSetGeometryTimeStepCount(geom,num_time_steps);

  Vec3fa* bspline = (Vec3fa*) alignedMalloc(16*sizeof(Vec3fa),16);
  for (int i=0; i<16; i++) {
    float f = (float)(i)/16.0f;
    bspline[i] = Vec3fa(2.0f*f-1.0f,sin(12.0f*f),cos(12.0f*f));
  }

  for (unsigned int t=0; t<num_time_steps; t++)
  {
    RTCBufferType bufType = RTC_BUFFER_TYPE_VERTEX;
    Vec3ff* vertices = (Vec3ff*) rtcSetNewGeometryBuffer(geom,bufType,t,RTC_FORMAT_FLOAT4,sizeof(Vec3ff),16);

    AffineSpace3fa rotation = AffineSpace3fa::rotate(Vec3fa(0,0,0),Vec3fa(0,1,0),2.0f*float(M_PI)*(float)t/(float)(num_time_steps-1));
    AffineSpace3fa scale = AffineSpace3fa::scale(Vec3fa(2.0f,1.0f,1.0f));

    for (int i=0; i<16; i++)
      vertices[i] = Vec3ff(xfmPoint(rotation*scale,bspline[i])+pos,0.2f);
  }

  int* indices = (int*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT,sizeof(int),15);
  for (int i=0; i<15; i++) indices[i] = i;

  alignedFree(bspline);

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* adds an instanced triangle cube to the scene, rotate instance */
RTCScene addInstancedTriangleCube (RTCScene global_scene, const Vec3fa& pos, unsigned int num_time_steps)
{
  RTCScene scene = rtcNewScene(g_device);
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX,  0, RTC_FORMAT_UINT3,  cube_triangle_indices, 0, 3*sizeof(unsigned int), 12);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, cube_vertices, 0, 4*sizeof(float), 8);
  rtcCommitGeometry(geom);
  rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  rtcCommitScene(scene);

  RTCGeometry inst = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
   rtcSetGeometryInstancedScene(inst,scene);
   rtcSetGeometryTimeStepCount(inst,num_time_steps);
  
  for (unsigned int t=0; t<num_time_steps; t++)
  {
    AffineSpace3fa rotation = AffineSpace3fa::rotate(Vec3fa(0,0,0),Vec3fa(0,1,0),2.0f*float(M_PI)*(float)t/(float)(num_time_steps-1));
    AffineSpace3fa scale = AffineSpace3fa::scale(Vec3fa(2.0f,1.0f,1.0f));
    AffineSpace3fa translation = AffineSpace3fa::translate(pos);
    AffineSpace3fa xfm = translation*rotation*scale;
    rtcSetGeometryTransform(inst,t,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&xfm);
  }

  rtcCommitGeometry(inst);
  rtcAttachGeometry(global_scene,inst);
  rtcReleaseGeometry(inst);
  return scene;
}

/* adds an instanced quad cube to the scene, rotate instance and geometry */
RTCScene addInstancedQuadCube (RTCScene global_scene, const Vec3fa& pos, unsigned int num_time_steps)
{
  RTCScene scene = rtcNewScene(g_device);
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_QUAD);
  rtcSetGeometryTimeStepCount(geom,num_time_steps);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT4, cube_quad_indices, 0, 4*sizeof(unsigned int), 6);

  for (unsigned int t=0; t<num_time_steps; t++)
  {
    RTCBufferType bufType = RTC_BUFFER_TYPE_VERTEX;
    Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom,bufType,t,RTC_FORMAT_FLOAT3,sizeof(Vec3fa),8);

    AffineSpace3fa rotation = AffineSpace3fa::rotate(Vec3fa(0,0,0),Vec3fa(0,1,0),0.5f*2.0f*float(M_PI)*(float)t/(float)(num_time_steps-1));
    AffineSpace3fa scale = AffineSpace3fa::scale(Vec3fa(2.0f,1.0f,1.0f));

    for (int i=0; i<8; i++) {
      Vec3fa v = Vec3fa(cube_vertices[i][0],cube_vertices[i][1],cube_vertices[i][2]);
      vertices[i] = Vec3fa(xfmPoint(rotation*scale,v));
    }
  }

  rtcCommitGeometry(geom);
  rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);  
  rtcCommitScene(scene);

  RTCGeometry inst = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
   rtcSetGeometryInstancedScene(inst,scene);
   rtcSetGeometryTimeStepCount(inst,num_time_steps);

  for (unsigned int t=0; t<num_time_steps; t++)
  {
    AffineSpace3fa rotation = AffineSpace3fa::rotate(Vec3fa(0,0,0),Vec3fa(0,1,0),0.5f*2.0f*float(M_PI)*(float)t/(float)(num_time_steps-1));
    AffineSpace3fa translation = AffineSpace3fa::translate(pos);
    AffineSpace3fa xfm = translation*rotation;
    rtcSetGeometryTransform(inst,t,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&xfm);
  }

  rtcCommitGeometry(inst);
  rtcAttachGeometry(global_scene,inst);
  rtcReleaseGeometry(inst);
  return scene;
}

// ======================================================================== //
//                     User defined sphere geometry                         //
// ======================================================================== //

void sphereBoundsFunc(const struct RTCBoundsFunctionArguments* args)
{
  const Sphere* spheres = (const Sphere*) args->geometryUserPtr;
  RTCBounds* bounds_o = args->bounds_o;
  const unsigned int time = args->timeStep;
  const Sphere& sphere = spheres[args->primID];
  float ft = 2.0f*float(M_PI) * (float) time / (float) (sphere.num_time_steps-1);
  Vec3fa p = sphere.p + Vec3fa(cos(ft),0.0f,sin(ft));
  bounds_o->lower_x = p.x-sphere.r;
  bounds_o->lower_y = p.y-sphere.r;
  bounds_o->lower_z = p.z-sphere.r;
  bounds_o->upper_x = p.x+sphere.r;
  bounds_o->upper_y = p.y+sphere.r;
  bounds_o->upper_z = p.z+sphere.r;
}

void sphereIntersectFuncN(const RTCIntersectFunctionNArguments* args)
{
  const int* valid = args->valid;
  void* ptr  = args->geometryUserPtr;
  RTCRayHitN* rays = (RTCRayHitN*)args->rayhit;
  unsigned int primID = args->primID;
  assert(args->N == 1);
  const Sphere* spheres = (const Sphere*)ptr;
  const Sphere& sphere = spheres[primID];

  if (!valid[0])
    return;
  
  Ray *ray = (Ray *)rays;
  
  const int time_segments = sphere.num_time_steps-1;
  const float time = ray->time()*(float)(time_segments);
  const int itime = clamp((int)(floor(time)),(int)0,time_segments-1);
  const float ftime = time - (float)(itime);
  const float ft0 = 2.0f*float(M_PI) * (float) (itime+0) / (float) (sphere.num_time_steps-1);
  const float ft1 = 2.0f*float(M_PI) * (float) (itime+1) / (float) (sphere.num_time_steps-1);
  const Vec3fa p0 = sphere.p + Vec3fa(cos(ft0),0.0f,sin(ft0));
  const Vec3fa p1 = sphere.p + Vec3fa(cos(ft1),0.0f,sin(ft1));
  const Vec3fa sphere_p = (1.0f-ftime)*p0 + ftime*p1;
  
  const Vec3fa v = ray->org-sphere_p;
  const float A = dot(ray->dir,ray->dir);
  const float B = 2.0f*dot(v,ray->dir);
  const float C = dot(v,v) - sqr(sphere.r);
  const float D = B*B - 4.0f*A*C;
  if (D < 0.0f) return;
  const float Q = sqrt(D);
  const float rcpA = rcp(A);
  const float t0 = 0.5f*rcpA*(-B-Q);
  const float t1 = 0.5f*rcpA*(-B+Q);
  if ((ray->tnear() < t0) & (t0 < ray->tfar)) {
    ray->u = 0.0f;
    ray->v = 0.0f;
    ray->tfar = t0;
    ray->geomID = sphere.geomID;
    ray->primID = (unsigned int) primID;
    ray->Ng = ray->org+t0*ray->dir-sphere_p;
  }
  if ((ray->tnear() < t1) & (t1 < ray->tfar)) {
    ray->u = 0.0f;
    ray->v = 0.0f;
    ray->tfar = t1;
    ray->geomID = sphere.geomID;
    ray->primID = (unsigned int) primID;
    ray->Ng = ray->org+t1*ray->dir-sphere_p;
  }
}

void sphereOccludedFuncN(const RTCOccludedFunctionNArguments* args)
{
  const int* valid = args->valid;
  void* ptr  = args->geometryUserPtr;
  RTCRayHitN* rays = (RTCRayHitN*)args->ray;
  unsigned int primID = args->primID;
  assert(args->N == 1);
  const Sphere* spheres = (const Sphere*)ptr;
  const Sphere& sphere = spheres[primID];

  if (!valid[0])
    return;
  
  Ray *ray = (Ray *)rays;
  const int time_segments = sphere.num_time_steps-1;
  const float time = ray->time()*(float)(time_segments);
  const int itime = clamp((int)(floor(time)),(int)0,time_segments-1);
  const float ftime = time - (float)(itime);
  const float ft0 = 2.0f*float(M_PI) * (float) (itime+0) / (float) (sphere.num_time_steps-1);
  const float ft1 = 2.0f*float(M_PI) * (float) (itime+1) / (float) (sphere.num_time_steps-1);
  const Vec3fa p0 = sphere.p + Vec3fa(cos(ft0),0.0f,sin(ft0));
  const Vec3fa p1 = sphere.p + Vec3fa(cos(ft1),0.0f,sin(ft1));
  const Vec3fa sphere_p = (1.0f-ftime)*p0 + ftime*p1;
  
  const Vec3fa v = ray->org-sphere_p;
  const float A = dot(ray->dir,ray->dir);
  const float B = 2.0f*dot(v,ray->dir);
  const float C = dot(v,v) - sqr(sphere.r);
  const float D = B*B - 4.0f*A*C;
  if (D < 0.0f) return;
  const float Q = sqrt(D);
  const float rcpA = rcp(A);
  const float t0 = 0.5f*rcpA*(-B-Q);
  const float t1 = 0.5f*rcpA*(-B+Q);
  if ((ray->tnear() < t0) & (t0 < ray->tfar)) {
    ray->tfar = neg_inf;
  }
  if ((ray->tnear() < t1) & (t1 < ray->tfar)) {
    ray->tfar = neg_inf;
  }
}

Sphere* addUserGeometrySphere (RTCScene scene, const Vec3fa& p, float r, unsigned int num_time_steps)
{
  RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
  Sphere* sphere = (Sphere*) alignedMalloc(sizeof(Sphere),16);
  sphere->p = p;
  sphere->r = r;
  sphere->geomID = rtcAttachGeometry(scene,geom);
  sphere->num_time_steps = num_time_steps;
  rtcSetGeometryUserPrimitiveCount(geom,1);
  rtcSetGeometryTimeStepCount(geom,num_time_steps);
  rtcSetGeometryUserData(geom,sphere);
  rtcSetGeometryBoundsFunction(geom,sphereBoundsFunc,nullptr);
  rtcSetGeometryIntersectFunction(geom,sphereIntersectFuncN);
  rtcSetGeometryOccludedFunction (geom,sphereOccludedFuncN);
  rtcCommitGeometry(geom);
  rtcReleaseGeometry(geom);
  return sphere;
}

/* adds a ground plane to the scene */
unsigned int addGroundPlane (RTCScene scene)
{
  /* create a triangulated plane with 2 triangles and 4 vertices */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* set vertices */
  Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),4);
  vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
  vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +15;
  vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
  vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +15;

  /* set triangles */
  Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2);
  triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
  triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
  /* create scene */
  TutorialData_Constructor(&data);
  g_scene = data.g_scene = rtcNewScene(g_device);
  data.g_time = g_time;

  /* add geometry to the scene */
  addTriangleCube(g_scene,Vec3fa(-5,1,-5),g_num_time_steps);
  addTriangleCube(g_scene,Vec3fa(-5,5,-5),g_num_time_steps2);

  addQuadCube    (g_scene,Vec3fa( 0,1,-5),g_num_time_steps);
  addQuadCube    (g_scene,Vec3fa( 0,5,-5),g_num_time_steps2);

  addSubdivCube  (g_scene,Vec3fa(+5,1,-5),g_num_time_steps);
  addSubdivCube  (g_scene,Vec3fa(+5,5,-5),g_num_time_steps2);

  addLines       (g_scene,Vec3fa(-5,1, 0),g_num_time_steps);
  addLines       (g_scene,Vec3fa(-5,5, 0),g_num_time_steps2);

  addCurve (g_scene,Vec3fa( 0,1, 0),RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,g_num_time_steps);
  addCurve (g_scene,Vec3fa( 0,5, 0),RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,g_num_time_steps2);

  addCurve (g_scene,Vec3fa(+5,1, 0),RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,g_num_time_steps);
  addCurve (g_scene,Vec3fa(+5,5, 0),RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,g_num_time_steps2);

  data.scene0 = addInstancedTriangleCube(g_scene,Vec3fa(-5,1,+5),g_num_time_steps);
  data.scene1 = addInstancedTriangleCube(g_scene,Vec3fa(-5,5,+5),g_num_time_steps2);

  data.scene2 = addInstancedQuadCube    (g_scene,Vec3fa( 0,1,+5),g_num_time_steps);
  data.scene3 = addInstancedQuadCube    (g_scene,Vec3fa( 0,5,+5),g_num_time_steps2);

  data.sphere0 = addUserGeometrySphere   (g_scene,Vec3fa(+5,1,+5),1.0f,g_num_time_steps);
  data.sphere1 = addUserGeometrySphere   (g_scene,Vec3fa(+5,5,+5),1.0f,g_num_time_steps2);

  addSphere(g_scene, Vec3fa(-5, 1, +10), RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT, g_num_time_steps);
  addSphere(g_scene, Vec3fa(-5, 5, +10), RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT, g_num_time_steps2);
  addSphere(g_scene, Vec3fa( 0, 1, +10), RTC_GEOMETRY_TYPE_DISC_POINT, g_num_time_steps);
  addSphere(g_scene, Vec3fa( 0, 5, +10), RTC_GEOMETRY_TYPE_DISC_POINT, g_num_time_steps2);
  addSphere(g_scene, Vec3fa(+5, 1, +10), RTC_GEOMETRY_TYPE_SPHERE_POINT, g_num_time_steps);
  addSphere(g_scene, Vec3fa(+5, 5, +10), RTC_GEOMETRY_TYPE_SPHERE_POINT, g_num_time_steps2);

  addGroundPlane(g_scene);

  /* commit changes to scene */
  rtcCommitScene (g_scene);
}

int frameID = 50;

/* task that renders a single screen tile */
Vec3fa renderPixel(const TutorialData& data, float x, float y, const ISPCCamera& camera, RayStats& stats)
{
  RTCIntersectContext context;
  rtcInitIntersectContext(&context);
  
  float time = abs((int)(0.01f*frameID) - 0.01f*frameID);
  if (data.g_time != -1) time = data.g_time;

  /* initialize ray */
  Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf, time);

  /* intersect ray with scene */
  rtcIntersect1(g_scene,&context,RTCRayHit_(ray));
  RayStats_addRay(stats);

  /* shade pixels */
  Vec3fa color = Vec3fa(0.0f);
  if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
  {
    Vec3fa diffuse = Vec3fa(0.5f,0.5f,0.5f);
    if (ray.instID[0] == RTC_INVALID_GEOMETRY_ID)
      ray.instID[0] = ray.geomID;
    switch (ray.instID[0] / 2) {
    case 0: diffuse = data.face_colors[ray.primID]; break;
    case 1: diffuse = data.face_colors[2*ray.primID]; break;
    case 2: diffuse = data.face_colors[2*ray.primID]; break;

    case 3: diffuse = Vec3fa(0.5f,0.0f,0.0f); break;
    case 4: diffuse = Vec3fa(0.0f,0.5f,0.0f); break;
    case 5: diffuse = Vec3fa(0.0f,0.0f,0.5f); break;

    case 6: diffuse = data.face_colors[ray.primID]; break;
    case 7: diffuse = data.face_colors[2*ray.primID]; break;
    case 8: diffuse = Vec3fa(0.5f,0.5f,0.0f); break;
    default: diffuse = Vec3fa(0.5f,0.5f,0.5f); break;
    }
    color = color + diffuse*0.5f;
    Vec3fa lightDir = normalize(Vec3fa(-1,-4,-1));

    /* initialize shadow ray */
    Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf, time);

    /* trace shadow ray */
    rtcOccluded1(g_scene,&context,RTCRay_(shadow));
    RayStats_addShadowRay(stats);

    /* add light contribution */
    if (shadow.tfar >= 0.0f)
      color = color + diffuse*clamp(-dot(lightDir,normalize(ray.Ng)),0.0f,1.0f);
  }
  return color;
}

void updatePixel(const TutorialData& data, int x, int y,
                  int* pixels,
                  const unsigned int width,
                  const unsigned int height,
                  const float time,
                  const ISPCCamera& camera, RayStats& stats)
{
  /* calculate pixel color */
  Vec3fa color = renderPixel(data,(float)x,(float)y,camera,stats);
  
  /* write color to framebuffer */
  Vec3ff accu_color = data.g_accu[y*width+x] + Vec3ff(color.x,color.y,color.z,1.0f); data.g_accu[y*width+x] = accu_color;
  float f = rcp(max(0.001f,accu_color.w));
  unsigned int r = (unsigned int) (255.0f * clamp(accu_color.x*f,0.0f,1.0f));
  unsigned int g = (unsigned int) (255.0f * clamp(accu_color.y*f,0.0f,1.0f));
  unsigned int b = (unsigned int) (255.0f * clamp(accu_color.z*f,0.0f,1.0f));
  pixels[y*width+x] = (b << 16) + (g << 8) + r;
}

/* renders a single screen tile */
void renderTileStandard(int taskIndex,
                        int threadIndex,
                        int* pixels,
                        const unsigned int width,
                        const unsigned int height,
                        const float time,
                        const ISPCCamera& camera,
                        const int numTilesX,
                        const int numTilesY)
{
  const unsigned int tileY = taskIndex / numTilesX;
  const unsigned int tileX = taskIndex - tileY * numTilesX;
  const unsigned int x0 = tileX * TILE_SIZE_X;
  const unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const unsigned int y0 = tileY * TILE_SIZE_Y;
  const unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    updatePixel(data,(float)x,(float)y,pixels,width,height,time,camera,g_stats[threadIndex]);
  }
}

/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera,
                         const int numTilesX,
                         const int numTilesY)
{
  renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}

extern "C" void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
{
  /* render next frame */
  const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
  }); 
}

/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
                           const unsigned int width,
                           const unsigned int height,
                           const float time,
                           const ISPCCamera& camera)
{
  /* create accumulator */
  if (data.g_accu_width != width || data.g_accu_height != height) {
    alignedFree(data.g_accu);
    data.g_accu = (Vec3ff*) alignedMalloc(width*height*sizeof(Vec3ff),16);
    data.g_accu_width = width;
    data.g_accu_height = height;
    for (unsigned int i=0; i<width*height; i++)
      data.g_accu[i] = Vec3ff(0.0f);
  }

  /* reset accumulator */
  bool camera_changed = g_changed; g_changed = false;
  camera_changed |= ne(data.g_accu_vx,camera.xfm.l.vx); data.g_accu_vx = camera.xfm.l.vx;
  camera_changed |= ne(data.g_accu_vy,camera.xfm.l.vy); data.g_accu_vy = camera.xfm.l.vy;
  camera_changed |= ne(data.g_accu_vz,camera.xfm.l.vz); data.g_accu_vz = camera.xfm.l.vz;
  camera_changed |= ne(data.g_accu_p, camera.xfm.p);    data.g_accu_p  = camera.xfm.p;
  //camera_changed = true;
  if (camera_changed) {
    data.g_accu_count=0;
    for (unsigned int i=0; i<width*height; i++)
      data.g_accu[i] = Vec3ff(0.0f);
  }

  /* render next frame */
  frameID++;
}

/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
  TutorialData_Destructor(&data);
}

} // namespace embree