File: triangle_geometry_device.cpp

package info (click to toggle)
embree 3.12.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,412 kB
  • sloc: cpp: 173,822; xml: 3,737; ansic: 2,955; python: 1,628; sh: 480; makefile: 193; csh: 42
file content (209 lines) | stat: -rw-r--r-- 8,635 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "triangle_geometry_device.h"

namespace embree {

RTCScene g_scene = nullptr;
TutorialData data;

/* adds a cube to the scene */
unsigned int addCube (RTCScene scene_i)
{
  /* create a triangulated cube with 12 triangles and 8 vertices */
  RTCGeometry mesh = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* create face and vertex color arrays */
  data.face_colors = (Vec3fa*) alignedMalloc(12*sizeof(Vec3fa),16);
  data.vertex_colors = (Vec3fa*) alignedMalloc(8*sizeof(Vec3fa),16);

  /* set vertices and vertex colors */
  Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),8);
  data.vertex_colors[0] = Vec3fa(0,0,0); vertices[0].x = -1; vertices[0].y = -1; vertices[0].z = -1;
  data.vertex_colors[1] = Vec3fa(0,0,1); vertices[1].x = -1; vertices[1].y = -1; vertices[1].z = +1;
  data.vertex_colors[2] = Vec3fa(0,1,0); vertices[2].x = -1; vertices[2].y = +1; vertices[2].z = -1;
  data.vertex_colors[3] = Vec3fa(0,1,1); vertices[3].x = -1; vertices[3].y = +1; vertices[3].z = +1;
  data.vertex_colors[4] = Vec3fa(1,0,0); vertices[4].x = +1; vertices[4].y = -1; vertices[4].z = -1;
  data.vertex_colors[5] = Vec3fa(1,0,1); vertices[5].x = +1; vertices[5].y = -1; vertices[5].z = +1;
  data.vertex_colors[6] = Vec3fa(1,1,0); vertices[6].x = +1; vertices[6].y = +1; vertices[6].z = -1;
  data.vertex_colors[7] = Vec3fa(1,1,1); vertices[7].x = +1; vertices[7].y = +1; vertices[7].z = +1;

  /* set triangles and face colors */
  int tri = 0;
  Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),12);

  // left side
  data.face_colors[tri] = Vec3fa(1,0,0); triangles[tri].v0 = 0; triangles[tri].v1 = 1; triangles[tri].v2 = 2; tri++;
  data.face_colors[tri] = Vec3fa(1,0,0); triangles[tri].v0 = 1; triangles[tri].v1 = 3; triangles[tri].v2 = 2; tri++;

  // right side
  data.face_colors[tri] = Vec3fa(0,1,0); triangles[tri].v0 = 4; triangles[tri].v1 = 6; triangles[tri].v2 = 5; tri++;
  data.face_colors[tri] = Vec3fa(0,1,0); triangles[tri].v0 = 5; triangles[tri].v1 = 6; triangles[tri].v2 = 7; tri++;

  // bottom side
  data.face_colors[tri] = Vec3fa(0.5f);  triangles[tri].v0 = 0; triangles[tri].v1 = 4; triangles[tri].v2 = 1; tri++;
  data.face_colors[tri] = Vec3fa(0.5f);  triangles[tri].v0 = 1; triangles[tri].v1 = 4; triangles[tri].v2 = 5; tri++;

  // top side
  data.face_colors[tri] = Vec3fa(1.0f);  triangles[tri].v0 = 2; triangles[tri].v1 = 3; triangles[tri].v2 = 6; tri++;
  data.face_colors[tri] = Vec3fa(1.0f);  triangles[tri].v0 = 3; triangles[tri].v1 = 7; triangles[tri].v2 = 6; tri++;

  // front side
  data.face_colors[tri] = Vec3fa(0,0,1); triangles[tri].v0 = 0; triangles[tri].v1 = 2; triangles[tri].v2 = 4; tri++;
  data.face_colors[tri] = Vec3fa(0,0,1); triangles[tri].v0 = 2; triangles[tri].v1 = 6; triangles[tri].v2 = 4; tri++;

  // back side
  data.face_colors[tri] = Vec3fa(1,1,0); triangles[tri].v0 = 1; triangles[tri].v1 = 5; triangles[tri].v2 = 3; tri++;
  data.face_colors[tri] = Vec3fa(1,1,0); triangles[tri].v0 = 3; triangles[tri].v1 = 5; triangles[tri].v2 = 7; tri++;

  rtcSetGeometryVertexAttributeCount(mesh,1);
  rtcSetSharedGeometryBuffer(mesh,RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE,0,RTC_FORMAT_FLOAT3,data.vertex_colors,0,sizeof(Vec3fa),8);
  
  rtcCommitGeometry(mesh);
  unsigned int geomID = rtcAttachGeometry(scene_i,mesh);
  rtcReleaseGeometry(mesh);
  return geomID;
}

/* adds a ground plane to the scene */
unsigned int addGroundPlane (RTCScene scene_i)
{
  /* create a triangulated plane with 2 triangles and 4 vertices */
  RTCGeometry mesh = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* set vertices */
  Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),4);
  vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
  vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
  vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
  vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;

  /* set triangles */
  Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2);
  triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
  triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
  
  rtcCommitGeometry(mesh);
  unsigned int geomID = rtcAttachGeometry(scene_i,mesh);
  rtcReleaseGeometry(mesh);
  return geomID;
}

/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{ 
  /* create scene */
  TutorialData_Constructor(&data);
  g_scene = data.g_scene = rtcNewScene(g_device);

  /* add cube */
  addCube(data.g_scene);

  /* add ground plane */
  addGroundPlane(data.g_scene);

  /* commit changes to scene */
  rtcCommitScene (data.g_scene);
}

/* task that renders a single screen tile */
void renderPixelStandard(const TutorialData& data,
                         int x, int y, 
                         int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera, RayStats& stats)
{
  RTCIntersectContext context;
  rtcInitIntersectContext(&context);
  
  /* initialize ray */
  Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);

  /* intersect ray with scene */
  rtcIntersect1(data.g_scene,&context,RTCRayHit_(ray));
  RayStats_addRay(stats);

  /* shade pixels */
  Vec3fa color = Vec3fa(0.0f);
  if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
  {
    Vec3fa diffuse = data.face_colors[ray.primID];
    color = color + diffuse*0.5f;
    Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));

    /* initialize shadow ray */
    Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf, 0.0f);

    /* trace shadow ray */
    rtcOccluded1(data.g_scene,&context,RTCRay_(shadow));
    RayStats_addShadowRay(stats);

    /* add light contribution */
    if (shadow.tfar >= 0.0f)
      color = color + diffuse*clamp(-dot(lightDir,normalize(ray.Ng)),0.0f,1.0f);
  }

  /* write color to framebuffer */
  unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
  unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
  unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
  pixels[y*width+x] = (b << 16) + (g << 8) + r;
}

/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera,
                         const int numTilesX,
                         const int numTilesY)
{
  const unsigned int tileY = taskIndex / numTilesX;
  const unsigned int tileX = taskIndex - tileY * numTilesX;
  const unsigned int x0 = tileX * TILE_SIZE_X;
  const unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const unsigned int y0 = tileY * TILE_SIZE_Y;
  const unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
  }
}

/* called by the C++ code to render */
extern "C" void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
{
  const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
  }); 
}

/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
                           const unsigned int width,
                           const unsigned int height,
                           const float time,
                           const ISPCCamera& camera)
{
}

/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
  TutorialData_Destructor(&data);
}

} // namespace embree