1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "viewer_device.isph"
RTCScene g_scene = NULL;
extern uniform bool g_changed;
uniform TutorialData data;
#define SPP 1
#define FIXED_EDGE_TESSELLATION_VALUE 3
#define MAX_EDGE_LEVEL 64.0f
#define MIN_EDGE_LEVEL 4.0f
#define LEVEL_FACTOR 64.0f
unmasked uniform bool monitorProgressFunction(void* uniform ptr, uniform double dn)
{
return true;
}
inline uniform float updateEdgeLevel( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos, const uniform unsigned int e0, const uniform unsigned int e1)
{
const uniform Vec3fa v0 = mesh->positions[0][mesh->position_indices[e0]];
const uniform Vec3fa v1 = mesh->positions[0][mesh->position_indices[e1]];
const uniform Vec3fa edge = v1-v0;
const uniform Vec3fa P = 0.5f*(v1+v0);
const uniform Vec3fa dist = cam_pos - P;
return max(min(LEVEL_FACTOR*(0.5f*length(edge)/length(dist)),MAX_EDGE_LEVEL),MIN_EDGE_LEVEL);
}
void updateEdgeLevelBuffer( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos, uniform unsigned int startID, uniform unsigned int endID )
{
for (uniform unsigned int f=startID; f<endID;f++) {
uniform unsigned int e = mesh->face_offsets[f];
uniform unsigned int N = mesh->verticesPerFace[f];
if (N == 4) /* fast path for quads */
for (uniform unsigned int i=0; i<4; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%4);
else if (N == 3) /* fast path for triangles */
for (uniform unsigned int i=0; i<3; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%3);
else /* fast path for general polygons */
for (uniform unsigned int i=0; i<N; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%N);
}
}
#if defined(ISPC)
task void updateSubMeshEdgeLevelBufferTask( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos )
{
const uniform unsigned int size = mesh->numFaces;
const uniform unsigned int startID = ((taskIndex+0)*size)/taskCount;
const uniform unsigned int endID = ((taskIndex+1)*size)/taskCount;
updateEdgeLevelBuffer(mesh,cam_pos,startID,endID);
}
task void updateMeshEdgeLevelBufferTask( uniform ISPCScene* uniform scene_in, const uniform Vec3fa& cam_pos )
{
uniform ISPCGeometry* uniform geometry = g_ispc_scene->geometries[taskIndex];
if (geometry->type != SUBDIV_MESH) return;
uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
uniform unsigned int geomID = mesh->geom.geomID;
if (mesh->numFaces < 10000) {
updateEdgeLevelBuffer(mesh,cam_pos,0,mesh->numFaces);
rtcUpdateGeometryBuffer(geometry->geometry, RTC_BUFFER_TYPE_LEVEL, 0);
}
rtcCommitGeometry(geometry->geometry);
}
#endif
void updateEdgeLevels(uniform ISPCScene* uniform scene_in, const uniform Vec3fa& cam_pos)
{
/* first update small meshes */
#if defined(ISPC)
launch[ scene_in->numGeometries ] updateMeshEdgeLevelBufferTask(scene_in,cam_pos); sync;
#endif
/* now update large meshes */
for (uniform unsigned int g=0; g<scene_in->numGeometries; g++)
{
uniform ISPCGeometry* uniform geometry = g_ispc_scene->geometries[g];
if (geometry->type != SUBDIV_MESH) continue;
uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
#if defined(ISPC)
if (mesh->numFaces < 10000) continue;
launch[ (mesh->numFaces+4095)/4096 ] updateSubMeshEdgeLevelBufferTask(mesh,cam_pos); sync;
#else
updateEdgeLevelBuffer(mesh,cam_pos,0,mesh->numFaces);
#endif
rtcUpdateGeometryBuffer(geometry->geometry, RTC_BUFFER_TYPE_LEVEL, 0);
rtcCommitGeometry(geometry->geometry);
}
}
#if 0
uniform bool g_use_smooth_normals = false;
void device_key_pressed_handler(uniform int key)
{
if (key == 110 /*n*/) g_use_smooth_normals = !g_use_smooth_normals;
else device_key_pressed_default(key);
}
#endif
RTCScene convertScene(uniform ISPCScene* uniform scene_in)
{
for (uniform unsigned int i=0; i<scene_in->numGeometries; i++)
{
uniform ISPCGeometry* uniform geometry = scene_in->geometries[i];
if (geometry->type == SUBDIV_MESH) {
data.subdiv_mode = true; break;
}
}
RTCScene scene_out = ConvertScene(g_device, g_ispc_scene, RTC_BUILD_QUALITY_MEDIUM);
rtcSetSceneProgressMonitorFunction(scene_out,monitorProgressFunction,NULL);
/* commit individual objects in case of instancing */
if (g_instancing_mode != ISPC_INSTANCING_NONE)
{
for (uniform unsigned int i=0; i<scene_in->numGeometries; i++) {
ISPCGeometry* uniform geometry = g_ispc_scene->geometries[i];
if (geometry->type == GROUP) rtcCommitScene(geometry->scene);
}
}
/* commit changes to scene */
return scene_out;
}
void postIntersectGeometry(const Ray& ray, DifferentialGeometry& dg, uniform ISPCGeometry* uniform geometry, int& materialID)
{
if (geometry->type == TRIANGLE_MESH)
{
uniform ISPCTriangleMesh* uniform mesh = (uniform ISPCTriangleMesh* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == QUAD_MESH)
{
uniform ISPCQuadMesh* uniform mesh = (uniform ISPCQuadMesh* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == SUBDIV_MESH)
{
uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == CURVES)
{
uniform ISPCHairSet* uniform mesh = (uniform ISPCHairSet* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == GRID_MESH)
{
uniform ISPCGridMesh* uniform mesh = (uniform ISPCGridMesh* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == POINTS)
{
uniform ISPCPointSet* uniform set = (uniform ISPCPointSet* uniform) geometry;
materialID = set->geom.materialID;
}
else if (geometry->type == GROUP) {
foreach_unique (geomID in ray.geomID) {
postIntersectGeometry(ray,dg,((uniform ISPCGroup*) geometry)->geometries[geomID],materialID);
}
}
else
assert(false);
}
AffineSpace3f calculate_interpolated_space (uniform ISPCInstance* uniform instance, float gtime)
{
if (instance->numTimeSteps == 1)
return make_AffineSpace3f(instance->spaces[0]);
/* calculate time segment itime and fractional time ftime */
const int time_segments = instance->numTimeSteps-1;
const float time = gtime*(float)(time_segments);
const int itime = clamp((int)(floor(time)),(varying int)0,time_segments-1);
const float ftime = time - (float)(itime);
return (1.0f-ftime)*make_AffineSpace3f(instance->spaces[itime+0]) + ftime*make_AffineSpace3f(instance->spaces[itime+1]);
}
typedef ISPCInstance* uniform ISPCInstancePtr;
inline int postIntersect(const uniform TutorialData& data, const Ray& ray, DifferentialGeometry& dg)
{
int materialID = 0;
foreach_unique (instID in ray.instID[0]) {
foreach_unique (geomID in ray.geomID) {
ISPCGeometry* uniform geometry = NULL;
if (data.instancing_mode != ISPC_INSTANCING_NONE) {
ISPCInstance* uniform instance = (ISPCInstancePtr) data.ispc_scene->geometries[instID];
geometry = instance->child;
} else {
geometry = data.ispc_scene->geometries[geomID];
}
postIntersectGeometry(ray,dg,geometry,materialID);
}
}
if (data.instancing_mode != ISPC_INSTANCING_NONE)
{
foreach_unique (instID in ray.instID[0])
{
/* get instance and geometry pointers */
ISPCInstance* uniform instance = (ISPCInstancePtr) data.ispc_scene->geometries[instID];
/* convert normals */
//AffineSpace3f space = (1.0f-ray.time)*make_AffineSpace3f(instance->space0) + ray.time*make_AffineSpace3f(instance->space1);
AffineSpace3f space = calculate_interpolated_space(instance,ray.time);
dg.Ng = xfmVector(space,dg.Ng);
dg.Ns = xfmVector(space,dg.Ns);
}
}
return materialID;
}
inline Vec3f face_forward(const Vec3f& dir, const Vec3f& _Ng) {
const Vec3f Ng = _Ng;
return dot(dir,Ng) < 0.0f ? Ng : neg(Ng);
}
/* task that renders a single screen tile */
void renderPixelStandard(const uniform TutorialData& data,
int x, int y,
uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const float time,
const uniform ISPCCamera& camera, uniform RayStats& stats)
{
/* initialize sampler */
RandomSampler sampler;
RandomSampler_init(sampler, (int)x, (int)y, 0);
/* initialize ray */
Ray ray = make_Ray(make_Vec3f(camera.xfm.p), make_Vec3f(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf, RandomSampler_get1D(sampler));
/* intersect ray with scene */
uniform RTCIntersectContext context;
rtcInitIntersectContext(&context);
context.flags = data.iflags_coherent;
#if RTC_MIN_WIDTH
context.minWidthDistanceFactor = 0.5f*data.min_width/width;
#endif
rtcIntersectV(data.scene,&context,RTCRayHit_(ray));
RayStats_addRay(stats);
/* shade background black */
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) {
pixels[y*width+x] = 0;
return;
}
/* shade all rays that hit something */
Vec3f color = make_Vec3f(0.5f);
/* compute differential geometry */
DifferentialGeometry dg;
dg.geomID = ray.geomID;
dg.primID = ray.primID;
dg.u = ray.u;
dg.v = ray.v;
dg.P = ray.org+ray.tfar*ray.dir;
dg.Ng = ray.Ng;
dg.Ns = ray.Ng;
#if 0
if (data.use_smooth_normals)
if (ray.geomID != RTC_INVALID_GEOMETRY_ID) // FIXME: workaround for ISPC bug, location reached with empty execution mask
{
Vec3f dPdu,dPdv;
foreach_unique (geomID in ray.geomID) {
rtcInterpolateV1(rtcGetGeometry(data.scene,geomID),ray.primID,ray.u,ray.v,RTC_BUFFER_TYPE_VERTEX,0,NULL,&dPdu.x,&dPdv.x,3);
}
dg.Ns = cross(dPdv,dPdu);
}
#endif
int materialID = postIntersect(data,ray,dg);
dg.Ng = face_forward(ray.dir,normalize(dg.Ng));
dg.Ns = face_forward(ray.dir,normalize(dg.Ns));
/* shade */
if (data.ispc_scene->materials[materialID]->type == MATERIAL_OBJ) {
uniform ISPCOBJMaterial* material = (uniform ISPCOBJMaterial*) data.ispc_scene->materials[materialID];
color = make_Vec3f(material->Kd);
}
color = color*dot(neg(ray.dir),dg.Ns);
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
const uniform int t = taskIndex;
const uniform unsigned int tileY = t / numTilesX;
const uniform unsigned int tileX = t - tileY * numTilesX;
const uniform unsigned int x0 = tileX * TILE_SIZE_X;
const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
}
}
uniform Vec3fa old_p;
/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
TutorialData_Constructor(&data);
old_p = make_Vec3fa(1E10);
}
export void renderFrameStandard (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
/* render image */
const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
}
/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
uniform bool camera_changed = g_changed; g_changed = false;
/* create scene */
if (data.scene == NULL) {
g_scene = data.scene = convertScene(g_ispc_scene);
if (data.subdiv_mode) updateEdgeLevels(g_ispc_scene, camera.xfm.p);
rtcCommitScene (data.scene);
old_p = camera.xfm.p;
}
else
{
/* check if camera changed */
if (ne(camera.xfm.p,old_p)) {
camera_changed = true;
old_p = camera.xfm.p;
}
/* update edge levels if camera changed */
if (camera_changed && data.subdiv_mode) {
updateEdgeLevels(g_ispc_scene,camera.xfm.p);
rtcCommitScene (data.scene);
}
}
}
/* called by the C++ code for cleanup */
export void device_cleanup ()
{
TutorialData_Destructor(&data);
}
|