File: viewer_device.ispc

package info (click to toggle)
embree 3.12.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,412 kB
  • sloc: cpp: 173,822; xml: 3,737; ansic: 2,955; python: 1,628; sh: 480; makefile: 193; csh: 42
file content (385 lines) | stat: -rw-r--r-- 13,567 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "viewer_device.isph"

RTCScene g_scene = NULL;
extern uniform bool g_changed;
uniform TutorialData data;

#define SPP 1

#define FIXED_EDGE_TESSELLATION_VALUE 3

#define MAX_EDGE_LEVEL 64.0f
#define MIN_EDGE_LEVEL  4.0f
#define LEVEL_FACTOR   64.0f

unmasked uniform bool monitorProgressFunction(void* uniform ptr, uniform double dn) 
{
  return true;
}

inline uniform float updateEdgeLevel( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos, const uniform unsigned int e0, const uniform unsigned int e1)
{
  const uniform Vec3fa v0 = mesh->positions[0][mesh->position_indices[e0]];
  const uniform Vec3fa v1 = mesh->positions[0][mesh->position_indices[e1]];
  const uniform Vec3fa edge = v1-v0;
  const uniform Vec3fa P = 0.5f*(v1+v0);
  const uniform Vec3fa dist = cam_pos - P;
  return max(min(LEVEL_FACTOR*(0.5f*length(edge)/length(dist)),MAX_EDGE_LEVEL),MIN_EDGE_LEVEL);
}


void updateEdgeLevelBuffer( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos, uniform unsigned int startID, uniform unsigned int endID )
{
  for (uniform unsigned int f=startID; f<endID;f++) {
    uniform unsigned int e = mesh->face_offsets[f];
    uniform unsigned int N = mesh->verticesPerFace[f];
    if (N == 4) /* fast path for quads */
      for (uniform unsigned int i=0; i<4; i++)
        mesh->subdivlevel[e+i] =  updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%4);
    else if (N == 3) /* fast path for triangles */
      for (uniform unsigned int i=0; i<3; i++)
        mesh->subdivlevel[e+i] =  updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%3);
    else /* fast path for general polygons */
      for (uniform unsigned int i=0; i<N; i++)
        mesh->subdivlevel[e+i] =  updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%N);
  }
}

#if defined(ISPC)
task void updateSubMeshEdgeLevelBufferTask( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos )
{
  const uniform unsigned int size = mesh->numFaces;
  const uniform unsigned int startID = ((taskIndex+0)*size)/taskCount;
  const uniform unsigned int endID   = ((taskIndex+1)*size)/taskCount;
  updateEdgeLevelBuffer(mesh,cam_pos,startID,endID);
}
task void updateMeshEdgeLevelBufferTask( uniform ISPCScene* uniform scene_in, const uniform Vec3fa& cam_pos )
{
  uniform ISPCGeometry* uniform geometry = g_ispc_scene->geometries[taskIndex];
  if (geometry->type != SUBDIV_MESH) return;
  uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
  uniform unsigned int geomID = mesh->geom.geomID;
  if (mesh->numFaces < 10000) {
    updateEdgeLevelBuffer(mesh,cam_pos,0,mesh->numFaces);
    rtcUpdateGeometryBuffer(geometry->geometry, RTC_BUFFER_TYPE_LEVEL, 0);
  }
  rtcCommitGeometry(geometry->geometry);
}
#endif

void updateEdgeLevels(uniform ISPCScene* uniform scene_in, const uniform Vec3fa& cam_pos)
{
  /* first update small meshes */
#if defined(ISPC)
  launch[ scene_in->numGeometries ] updateMeshEdgeLevelBufferTask(scene_in,cam_pos); sync;
#endif

  /* now update large meshes */
  for (uniform unsigned int g=0; g<scene_in->numGeometries; g++)
  {
    uniform ISPCGeometry* uniform geometry = g_ispc_scene->geometries[g];
    if (geometry->type != SUBDIV_MESH) continue;
    uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
#if defined(ISPC)
    if (mesh->numFaces < 10000) continue;
    launch[ (mesh->numFaces+4095)/4096 ] updateSubMeshEdgeLevelBufferTask(mesh,cam_pos); sync;
#else
    updateEdgeLevelBuffer(mesh,cam_pos,0,mesh->numFaces);
#endif
    rtcUpdateGeometryBuffer(geometry->geometry, RTC_BUFFER_TYPE_LEVEL, 0);
    rtcCommitGeometry(geometry->geometry);
  }
}

#if 0
uniform bool g_use_smooth_normals = false;
void device_key_pressed_handler(uniform int key)
{
  if (key == 110 /*n*/) g_use_smooth_normals = !g_use_smooth_normals;
  else device_key_pressed_default(key);
}
#endif

RTCScene convertScene(uniform ISPCScene* uniform scene_in)
{
  for (uniform unsigned int i=0; i<scene_in->numGeometries; i++)
  {
    uniform ISPCGeometry* uniform geometry = scene_in->geometries[i];
    if (geometry->type == SUBDIV_MESH) {
      data.subdiv_mode = true; break;
    }
  }

  RTCScene scene_out = ConvertScene(g_device, g_ispc_scene, RTC_BUILD_QUALITY_MEDIUM);
  rtcSetSceneProgressMonitorFunction(scene_out,monitorProgressFunction,NULL);

  /* commit individual objects in case of instancing */
  if (g_instancing_mode != ISPC_INSTANCING_NONE)
  {
    for (uniform unsigned int i=0; i<scene_in->numGeometries; i++) {
      ISPCGeometry* uniform geometry = g_ispc_scene->geometries[i];
      if (geometry->type == GROUP) rtcCommitScene(geometry->scene);
    }
  }

  /* commit changes to scene */
  return scene_out;
}


void postIntersectGeometry(const Ray& ray, DifferentialGeometry& dg, uniform ISPCGeometry* uniform geometry, int& materialID)
{
  if (geometry->type == TRIANGLE_MESH)
  {
    uniform ISPCTriangleMesh* uniform mesh = (uniform ISPCTriangleMesh* uniform) geometry;
    materialID = mesh->geom.materialID;
  }
  else if (geometry->type == QUAD_MESH)
  {
    uniform ISPCQuadMesh* uniform mesh = (uniform ISPCQuadMesh* uniform) geometry;
    materialID = mesh->geom.materialID;
  }
  else if (geometry->type == SUBDIV_MESH)
  {
    uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
    materialID = mesh->geom.materialID;
  }
  else if (geometry->type == CURVES)
  {
    uniform ISPCHairSet* uniform mesh = (uniform ISPCHairSet* uniform) geometry;
    materialID = mesh->geom.materialID;
  }
  else if (geometry->type == GRID_MESH)
  {
    uniform ISPCGridMesh* uniform mesh = (uniform ISPCGridMesh* uniform) geometry;
    materialID = mesh->geom.materialID;
  }
  else if (geometry->type == POINTS)
  {
    uniform ISPCPointSet* uniform set = (uniform ISPCPointSet* uniform) geometry;
    materialID = set->geom.materialID;
  }
  else if (geometry->type == GROUP) {
    foreach_unique (geomID in ray.geomID) {
      postIntersectGeometry(ray,dg,((uniform ISPCGroup*) geometry)->geometries[geomID],materialID);
    }
  }
  else
    assert(false);
}

AffineSpace3f calculate_interpolated_space (uniform ISPCInstance* uniform instance, float gtime)
{
  if (instance->numTimeSteps == 1)
    return make_AffineSpace3f(instance->spaces[0]);

   /* calculate time segment itime and fractional time ftime */
  const int time_segments = instance->numTimeSteps-1;
  const float time = gtime*(float)(time_segments);
  const int itime = clamp((int)(floor(time)),(varying int)0,time_segments-1);
  const float ftime = time - (float)(itime);
  return (1.0f-ftime)*make_AffineSpace3f(instance->spaces[itime+0]) + ftime*make_AffineSpace3f(instance->spaces[itime+1]);
}

typedef ISPCInstance* uniform ISPCInstancePtr;

inline int postIntersect(const uniform TutorialData& data, const Ray& ray, DifferentialGeometry& dg)
{
  int materialID = 0;
  foreach_unique (instID in ray.instID[0]) {
    foreach_unique (geomID in ray.geomID) {
      ISPCGeometry* uniform geometry = NULL;
      if (data.instancing_mode != ISPC_INSTANCING_NONE) {
        ISPCInstance* uniform instance = (ISPCInstancePtr) data.ispc_scene->geometries[instID];
        geometry = instance->child;
      } else {
        geometry = data.ispc_scene->geometries[geomID];
      }
      postIntersectGeometry(ray,dg,geometry,materialID);
    }
  }

  if (data.instancing_mode != ISPC_INSTANCING_NONE)
  {
    foreach_unique (instID in ray.instID[0])
    {
      /* get instance and geometry pointers */
      ISPCInstance* uniform instance = (ISPCInstancePtr) data.ispc_scene->geometries[instID];

      /* convert normals */
      //AffineSpace3f space = (1.0f-ray.time)*make_AffineSpace3f(instance->space0) + ray.time*make_AffineSpace3f(instance->space1);
      AffineSpace3f space = calculate_interpolated_space(instance,ray.time);
      dg.Ng = xfmVector(space,dg.Ng);
      dg.Ns = xfmVector(space,dg.Ns);
    }
  }

  return materialID;
}

inline Vec3f face_forward(const Vec3f& dir, const Vec3f& _Ng) {
  const Vec3f Ng = _Ng;
  return dot(dir,Ng) < 0.0f ? Ng : neg(Ng);
}

/* task that renders a single screen tile */
void renderPixelStandard(const uniform TutorialData& data,
                         int x, int y, 
                         uniform int* uniform pixels,
                         const uniform unsigned int width,
                         const uniform unsigned int height,
                         const float time,
                         const uniform ISPCCamera& camera, uniform RayStats& stats)
{
  /* initialize sampler */
  RandomSampler sampler;
  RandomSampler_init(sampler, (int)x, (int)y, 0);

  /* initialize ray */
  Ray ray = make_Ray(make_Vec3f(camera.xfm.p), make_Vec3f(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf, RandomSampler_get1D(sampler));

  /* intersect ray with scene */
  uniform RTCIntersectContext context;
  rtcInitIntersectContext(&context);
  context.flags = data.iflags_coherent;
#if RTC_MIN_WIDTH
  context.minWidthDistanceFactor = 0.5f*data.min_width/width;
#endif
  rtcIntersectV(data.scene,&context,RTCRayHit_(ray));
  RayStats_addRay(stats);

  /* shade background black */
  if (ray.geomID == RTC_INVALID_GEOMETRY_ID) {
    pixels[y*width+x] = 0;
    return;
  }

  /* shade all rays that hit something */
  Vec3f color = make_Vec3f(0.5f);

  /* compute differential geometry */
  DifferentialGeometry dg;
  dg.geomID = ray.geomID;
  dg.primID = ray.primID;
  dg.u = ray.u;
  dg.v = ray.v;
  dg.P  = ray.org+ray.tfar*ray.dir;
  dg.Ng = ray.Ng;
  dg.Ns = ray.Ng;

#if 0
  if (data.use_smooth_normals)
    if (ray.geomID != RTC_INVALID_GEOMETRY_ID) // FIXME: workaround for ISPC bug, location reached with empty execution mask
    {
      Vec3f dPdu,dPdv;
      foreach_unique (geomID in ray.geomID) {
        rtcInterpolateV1(rtcGetGeometry(data.scene,geomID),ray.primID,ray.u,ray.v,RTC_BUFFER_TYPE_VERTEX,0,NULL,&dPdu.x,&dPdv.x,3);
      }
      dg.Ns = cross(dPdv,dPdu);
    }
#endif

  int materialID = postIntersect(data,ray,dg);
  dg.Ng = face_forward(ray.dir,normalize(dg.Ng));
  dg.Ns = face_forward(ray.dir,normalize(dg.Ns));

  /* shade */
  if (data.ispc_scene->materials[materialID]->type == MATERIAL_OBJ) {
    uniform ISPCOBJMaterial* material = (uniform ISPCOBJMaterial*) data.ispc_scene->materials[materialID];
    color = make_Vec3f(material->Kd);
  }

  color = color*dot(neg(ray.dir),dg.Ns);

  /* write color to framebuffer */
  unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
  unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
  unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
  pixels[y*width+x] = (b << 16) + (g << 8) + r;
}

/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
                         const uniform unsigned int width,
                         const uniform unsigned int height,
                         const uniform float time,
                         const uniform ISPCCamera& camera,
                         const uniform int numTilesX,
                         const uniform int numTilesY)
{
  const uniform int t = taskIndex;
  const uniform unsigned int tileY = t / numTilesX;
  const uniform unsigned int tileX = t - tileY * numTilesX;
  const uniform unsigned int x0 = tileX * TILE_SIZE_X;
  const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
  const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  foreach_tiled (y = y0 ... y1, x = x0 ... x1)
  {
    renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
  }
}

uniform Vec3fa old_p;

/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
  TutorialData_Constructor(&data);
  old_p = make_Vec3fa(1E10);
}

export void renderFrameStandard (uniform int* uniform pixels,
                          const uniform unsigned int width,
                          const uniform unsigned int height,
                          const uniform float time,
                          const uniform ISPCCamera& camera)
{
  /* render image */
  const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
}

/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
                           const uniform unsigned int width,
                           const uniform unsigned int height,
                           const uniform float time,
                           const uniform ISPCCamera& camera)
{
  uniform bool camera_changed = g_changed; g_changed = false;

  /* create scene */
  if (data.scene == NULL) {
    g_scene = data.scene = convertScene(g_ispc_scene);
    if (data.subdiv_mode) updateEdgeLevels(g_ispc_scene, camera.xfm.p);
    rtcCommitScene (data.scene);
    old_p = camera.xfm.p;
  }

  else
  {
    /* check if camera changed */
    if (ne(camera.xfm.p,old_p)) {
      camera_changed = true;
      old_p = camera.xfm.p;
    }

    /* update edge levels if camera changed */
    if (camera_changed && data.subdiv_mode) {
      updateEdgeLevels(g_ispc_scene,camera.xfm.p);
      rtcCommitScene (data.scene);
    }
  }
}

/* called by the C++ code for cleanup */
export void device_cleanup ()
{
  TutorialData_Destructor(&data);
}