1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/math/random_sampler.h"
#include "../common/tutorial/tutorial_device.h"
#include "../common/tutorial/scene_device.h"
#include "../common/math/sampling.h"
namespace embree {
#define ANIM_FPS 15.0f
#define ENABLE_ANIM 1
#define VERTEX_NORMALS 0
#define SHADOWS 1
#define VERTEX_INTERPOLATION_BLOCK_SIZE 1024
extern "C" ISPCScene* g_ispc_scene;
/* scene data */
RTCScene g_scene = nullptr;
Vec3fa* ls_positions = nullptr;
/* animation data */
double animTime = -1.0f; // global time counter
// ==================================================================================================
// ==================================================================================================
// ==================================================================================================
void convertTriangleMesh(ISPCTriangleMesh* mesh, RTCScene scene_out)
{
/* if more than a single timestep, mark object as dynamic */
RTCBuildQuality quality = mesh->numTimeSteps > 1 ? RTC_BUILD_QUALITY_LOW : RTC_BUILD_QUALITY_MEDIUM;
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
rtcSetGeometryBuildQuality(geom, quality);
Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vec3fa), mesh->numVertices);
for (unsigned int i=0;i<mesh->numVertices;i++) vertices[i] = mesh->positions[0][i];
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, mesh->triangles, 0, sizeof(ISPCTriangle), mesh->numTriangles);
rtcCommitGeometry(geom);
mesh->geom.geometry = geom;
mesh->geom.geomID = rtcAttachGeometry(scene_out,geom);
}
void convertQuadMesh(ISPCQuadMesh* mesh, RTCScene scene_out)
{
/* if more than a single timestep, mark object as dynamic */
RTCBuildQuality quality = mesh->numTimeSteps > 1 ? RTC_BUILD_QUALITY_LOW : RTC_BUILD_QUALITY_MEDIUM;
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_QUAD);
rtcSetGeometryBuildQuality(geom, quality);
Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vec3fa), mesh->numVertices);
for (unsigned int i=0;i<mesh->numVertices;i++) vertices[i] = mesh->positions[0][i];
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT4, mesh->quads, 0, sizeof(ISPCQuad), mesh->numQuads);
rtcCommitGeometry(geom);
mesh->geom.geometry = geom;
mesh->geom.geomID = rtcAttachGeometry(scene_out,geom);
}
void convertSubdivMesh(ISPCSubdivMesh* mesh, RTCScene scene_out)
{
/* if more than a single timestep, mark object as dynamic */
RTCBuildQuality quality = mesh->numTimeSteps > 1 ? RTC_BUILD_QUALITY_LOW : RTC_BUILD_QUALITY_MEDIUM;
RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_SUBDIVISION);
rtcSetGeometryBuildQuality(geom, quality);
for (unsigned int i=0; i<mesh->numEdges; i++) mesh->subdivlevel[i] = 4.0f;
Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vec3fa), mesh->numVertices);
for (unsigned int i=0;i<mesh->numVertices;i++) vertices[i] = mesh->positions[0][i];
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_LEVEL, 0, RTC_FORMAT_FLOAT, mesh->subdivlevel, 0, sizeof(float), mesh->numEdges);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, mesh->position_indices, 0, sizeof(unsigned int), mesh->numEdges);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_FACE, 0, RTC_FORMAT_UINT, mesh->verticesPerFace, 0, sizeof(unsigned int), mesh->numFaces);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_HOLE, 0, RTC_FORMAT_UINT, mesh->holes, 0, sizeof(unsigned int), mesh->numFaces);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_EDGE_CREASE_INDEX, 0, RTC_FORMAT_UINT2, mesh->edge_creases, 0, 2*sizeof(unsigned int), mesh->numEdgeCreases);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT, 0, RTC_FORMAT_FLOAT, mesh->edge_crease_weights, 0, sizeof(float), mesh->numEdgeCreases);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX, 0, RTC_FORMAT_UINT, mesh->vertex_creases, 0, sizeof(unsigned int), mesh->numVertexCreases);
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT, 0, RTC_FORMAT_FLOAT, mesh->vertex_crease_weights, 0, sizeof(float), mesh->numVertexCreases);
rtcSetGeometrySubdivisionMode(geom, 0, mesh->position_subdiv_mode);
rtcCommitGeometry(geom);
mesh->geom.geometry = geom;
mesh->geom.geomID = rtcAttachGeometry(scene_out,geom);
}
void convertCurveGeometry(ISPCHairSet* hair, RTCScene scene_out)
{
/* if more than a single timestep, mark object as dynamic */
RTCBuildQuality quality = hair->numTimeSteps > 1 ? RTC_BUILD_QUALITY_LOW : RTC_BUILD_QUALITY_MEDIUM;
/* create object */
RTCGeometry geom = rtcNewGeometry (g_device, hair->type);
rtcSetGeometryBuildQuality(geom, quality);
/* generate vertex buffer */
Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, sizeof(Vec3fa), hair->numVertices);
for (unsigned int i=0;i<hair->numVertices;i++) vertices[i] = hair->positions[0][i];
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, hair->hairs, 0, sizeof(ISPCHair), hair->numHairs);
if (hair->type != RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE)
rtcSetGeometryTessellationRate(geom,(float)hair->tessellation_rate);
rtcCommitGeometry(geom);
hair->geom.geometry = geom;
hair->geom.geomID = rtcAttachGeometry(scene_out,geom);
}
unsigned int getNumObjects(ISPCScene* scene_in) {
return scene_in->numGeometries;
}
RTCScene createScene(ISPCScene* scene_in)
{
RTCScene scene = rtcNewScene(g_device);
rtcSetSceneBuildQuality(scene,RTC_BUILD_QUALITY_LOW);
rtcSetSceneFlags(scene, RTC_SCENE_FLAG_DYNAMIC);
return scene;
}
void createObject(const unsigned int i, ISPCScene* scene_in, RTCScene scene_out)
{
ISPCGeometry* geometry = scene_in->geometries[i];
if (geometry->type == SUBDIV_MESH) {
convertSubdivMesh((ISPCSubdivMesh*) geometry, scene_out);
}
else if (geometry->type == TRIANGLE_MESH) {
convertTriangleMesh((ISPCTriangleMesh*) geometry, scene_out);
}
else if (geometry->type == QUAD_MESH) {
convertQuadMesh((ISPCQuadMesh*) geometry, scene_out);
}
else if (geometry->type == CURVES) {
convertCurveGeometry((ISPCHairSet*) geometry, scene_out);
}
else
assert(false);
}
Vec3fa lerpr(const Vec3fa& v0, const Vec3fa& v1, const float t) {
return v0*(1.0f-t)+v1*t;
}
void interpolateVertexBlock (int taskIndex, int threadIndex, const unsigned int numVertices,
Vec3fa* vertices,
const Vec3fa* const input0,
const Vec3fa* const input1,
const float tt)
{
const unsigned int b = taskIndex;
const unsigned int startID = b*VERTEX_INTERPOLATION_BLOCK_SIZE;
const unsigned int endID = min(startID + VERTEX_INTERPOLATION_BLOCK_SIZE,numVertices);
for (unsigned int i=startID; i<endID; i++)
vertices[i] = lerpr(input0[i],input1[i],tt);
}
void interpolateVertices(RTCGeometry geom,
const unsigned int numVertices,
const Vec3fa* const input0,
const Vec3fa* const input1,
const float tt)
{
Vec3fa* vertices = (Vec3fa*) rtcGetGeometryBufferData(geom, RTC_BUFFER_TYPE_VERTEX, 0);
#if 1
const unsigned int blocks = (numVertices+VERTEX_INTERPOLATION_BLOCK_SIZE-1) / VERTEX_INTERPOLATION_BLOCK_SIZE;
parallel_for(size_t(0),size_t(blocks),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
interpolateVertexBlock((int)i,threadIndex,numVertices,vertices,input0,input1,tt);
});
#else
for (unsigned int i=0; i<numVertices; i++)
vertices[i] = lerpr(input0[i],input1[i],tt);
#endif
rtcUpdateGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX, 0);
rtcCommitGeometry(geom);
}
void updateVertexData(const unsigned int ID,
ISPCScene* scene_in,
RTCScene scene_out,
const unsigned int keyFrameID,
const float tt)
{
ISPCGeometry* geometry = scene_in->geometries[ID];
if (geometry->type == SUBDIV_MESH) {
/* if static do nothing */
if (((ISPCSubdivMesh*)geometry)->numTimeSteps <= 1) return;
rtcCommitGeometry(geometry->geometry);
}
else if (geometry->type == TRIANGLE_MESH) {
ISPCTriangleMesh* mesh = (ISPCTriangleMesh*)geometry;
/* if static do nothing */
if (mesh->numTimeSteps <= 1) return;
/* interpolate two vertices from two timesteps */
const unsigned int t0 = (keyFrameID+0) % mesh->numTimeSteps;
const unsigned int t1 = (keyFrameID+1) % mesh->numTimeSteps;
const Vec3fa* const input0 = mesh->positions[t0];
const Vec3fa* const input1 = mesh->positions[t1];
interpolateVertices(geometry->geometry, mesh->numVertices, input0, input1, tt);
}
else if (geometry->type == QUAD_MESH) {
ISPCQuadMesh* mesh = (ISPCQuadMesh*)geometry;
/* if static do nothing */
if (mesh->numTimeSteps <= 1) return;
/* interpolate two vertices from two timesteps */
const unsigned int t0 = (keyFrameID+0) % mesh->numTimeSteps;
const unsigned int t1 = (keyFrameID+1) % mesh->numTimeSteps;
const Vec3fa* const input0 = mesh->positions[t0];
const Vec3fa* const input1 = mesh->positions[t1];
interpolateVertices(geometry->geometry, mesh->numVertices, input0, input1, tt);
}
else if (geometry->type == CURVES) {
/* if static do nothing */
if (((ISPCHairSet*)geometry)->numTimeSteps <= 1) return;
rtcCommitGeometry(geometry->geometry);
}
else
assert(false);
}
void renderTileStandard(int taskIndex,
int threadIndex,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0+TILE_SIZE_X,width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0+TILE_SIZE_Y,height);
RayStats& stats = g_stats[threadIndex];
Ray rays[TILE_SIZE_X*TILE_SIZE_Y];
/* generate stream of primary rays */
unsigned int N = 0;
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
/* ISPC workaround for mask == 0 */
/* initialize ray */
Ray& ray = rays[N++];
bool mask = 1; { // invalidates inactive rays
ray.tnear() = mask ? 0.0f : (float)(pos_inf);
ray.tfar = mask ? (float)(inf) : (float)(neg_inf);
}
init_Ray(ray, Vec3fa(camera.xfm.p), Vec3fa(normalize((float)x*camera.xfm.l.vx + (float)y*camera.xfm.l.vy + camera.xfm.l.vz)), ray.tnear(), ray.tfar);
RayStats_addRay(stats);
}
RTCIntersectContext context;
rtcInitIntersectContext(&context);
context.flags = g_iflags_coherent;
/* trace stream of rays */
rtcIntersect1M(g_scene,&context,(RTCRayHit*)&rays,N,sizeof(Ray));
/* shade stream of rays */
Vec3fa colors[TILE_SIZE_X*TILE_SIZE_Y];
N = 0;
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
/* ISPC workaround for mask == 0 */
Ray& ray = rays[N];
Vec3fa Ng = ray.Ng;
/* shading */
Vec3fa color = Vec3fa(0.0f,1.0f,0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
/* vertex normals */
#if VERTEX_NORMALS == 1
ISPCGeometry* geometry = g_ispc_scene->geometries[ray.geomID];
if (geometry->type == TRIANGLE_MESH)
{
ISPCTriangleMesh* mesh = (ISPCTriangleMesh*) geometry;
if (mesh->normals)
{
ISPCTriangle* tri = &mesh->triangles[ray.primID];
const Vec3fa n0 = mesh->normals[tri->v0];
const Vec3fa n1 = mesh->normals[tri->v1];
const Vec3fa n2 = mesh->normals[tri->v2];
const Vec3fa n = n0*(1.0f-ray.u-ray.v) + n1*ray.u + n2*ray.v;
Ng = Vec3fa(n.x,n.y,n.z);
}
}
#endif
color = Vec3fa(abs(dot(ray.dir,normalize(Ng))));
}
colors[N++] = color;
}
#if SHADOWS == 1
/* do some hard shadows to point lights */
if (g_ispc_scene->numLights)
{
for (unsigned int i=0; i<g_ispc_scene->numLights; i++)
{
/* init shadow/occlusion rays */
for (unsigned int n=0;n<N;n++)
{
Ray& ray = rays[n];
const bool valid = ray.geomID != RTC_INVALID_GEOMETRY_ID;
const Vec3fa hitpos = ray.org + ray.dir * ray.tfar;
const Vec3fa shadow_org = hitpos - ray.org;
init_Ray(ray, ls_positions[i], shadow_org, 1E-4f, valid ? 0.99f : -1.0f);
RayStats_addShadowRay(stats);
}
/* trace shadow rays */
#if 0
for (unsigned int n=0;n<N;n++)
rtcOccluded1(g_scene,&context,RTCRay_(rays[n]));
#else
rtcOccluded1M(g_scene,&context,(RTCRay*)&rays,N,sizeof(Ray));
#endif
/* modify pixel color based on occlusion */
for (unsigned int n=0;n<N;n++)
if (rays[n].tfar >= 0.0f)
colors[n] = colors[n] * 0.1f;
}
}
#endif
N = 0;
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
/* ISPC workaround for mask == 0 */
Vec3fa& color = colors[N++];
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
}
/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
/* create scene */
g_scene = createScene(g_ispc_scene);
/* create objects */
unsigned int numObjects = getNumObjects(g_ispc_scene);
for (unsigned int i=0;i<numObjects;i++)
createObject(i,g_ispc_scene,g_scene);
rtcCommitScene (g_scene);
}
#define TICKS_PER_SECOND 2000000000
inline double getTime() { return (double)clock() / TICKS_PER_SECOND; }
extern "C" void renderFrameStandard (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
});
}
/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
/* =================================== */
/* samples LS positions as pointlights */
/* =================================== */
if (g_ispc_scene->numLights)
{
if (ls_positions == nullptr) ls_positions = (Vec3fa*) alignedMalloc(g_ispc_scene->numLights*sizeof(Vec3fa),16);
DifferentialGeometry dg;
dg.geomID = 0;
dg.primID = 0;
dg.u = 0.0f;
dg.v = 0.0f;
dg.P = Vec3fa(0.0f,0.0f,0.0f);
dg.Ng = Vec3fa(0.0f,0.0f,0.0f);
dg.Ns = dg.Ng;
for (unsigned int i=0; i<g_ispc_scene->numLights; i++)
{
const Light* l = g_ispc_scene->lights[i];
const Vec2f sample = Vec2f(0.0f,0.0f);
Light_SampleRes ls = l->sample(l,dg,sample);
ls_positions[i] = ls.dir * ls.dist;
}
}
/* =============== */
/* update geometry */
/* =============== */
#if ENABLE_ANIM == 1
if (animTime < 0.0f) animTime = getTime();
const float atime = (float)((getTime() - animTime) * ANIM_FPS);
const unsigned int intpart = (unsigned int)floor(atime);
const double fracpart = atime - (double)intpart;
const unsigned int keyFrameID = intpart;
unsigned int numObjects = getNumObjects(g_ispc_scene);
for (unsigned int i=0;i<numObjects;i++)
updateVertexData(i, g_ispc_scene, g_scene, keyFrameID, (float)fracpart);
/* =========== */
/* rebuild bvh */
/* =========== */
rtcCommitScene(g_scene);
#endif
}
/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
rtcReleaseScene (g_scene); g_scene = nullptr;
}
} // namespace embree
|