File: viewer_anim_device.cpp

package info (click to toggle)
embree 3.12.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,412 kB
  • sloc: cpp: 173,822; xml: 3,737; ansic: 2,955; python: 1,628; sh: 480; makefile: 193; csh: 42
file content (460 lines) | stat: -rw-r--r-- 17,755 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "../common/math/random_sampler.h"
#include "../common/tutorial/tutorial_device.h"
#include "../common/tutorial/scene_device.h"
#include "../common/math/sampling.h"

namespace embree {

#define ANIM_FPS 15.0f
#define ENABLE_ANIM 1
#define VERTEX_NORMALS 0
#define SHADOWS 1
#define VERTEX_INTERPOLATION_BLOCK_SIZE 1024

extern "C" ISPCScene* g_ispc_scene;

/* scene data */
RTCScene g_scene   = nullptr;
Vec3fa* ls_positions = nullptr;

/* animation data */
double animTime        = -1.0f; // global time counter


  // ==================================================================================================
  // ==================================================================================================
  // ==================================================================================================

void convertTriangleMesh(ISPCTriangleMesh* mesh, RTCScene scene_out)
{
  /* if more than a single timestep, mark object as dynamic */
  RTCBuildQuality quality = mesh->numTimeSteps > 1 ? RTC_BUILD_QUALITY_LOW : RTC_BUILD_QUALITY_MEDIUM;
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
  rtcSetGeometryBuildQuality(geom, quality);
  Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vec3fa), mesh->numVertices);
  for (unsigned int i=0;i<mesh->numVertices;i++) vertices[i] = mesh->positions[0][i];
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, mesh->triangles, 0, sizeof(ISPCTriangle), mesh->numTriangles);
  rtcCommitGeometry(geom);
  mesh->geom.geometry = geom;
  mesh->geom.geomID = rtcAttachGeometry(scene_out,geom);
}

void convertQuadMesh(ISPCQuadMesh* mesh, RTCScene scene_out)
{
  /* if more than a single timestep, mark object as dynamic */
  RTCBuildQuality quality = mesh->numTimeSteps > 1 ? RTC_BUILD_QUALITY_LOW : RTC_BUILD_QUALITY_MEDIUM;
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_QUAD);
  rtcSetGeometryBuildQuality(geom, quality);
  Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vec3fa), mesh->numVertices);
  for (unsigned int i=0;i<mesh->numVertices;i++) vertices[i] = mesh->positions[0][i];
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT4, mesh->quads, 0, sizeof(ISPCQuad), mesh->numQuads);
  rtcCommitGeometry(geom);
  mesh->geom.geometry = geom;
  mesh->geom.geomID = rtcAttachGeometry(scene_out,geom);
}

void convertSubdivMesh(ISPCSubdivMesh* mesh, RTCScene scene_out)
{
  /* if more than a single timestep, mark object as dynamic */
  RTCBuildQuality quality = mesh->numTimeSteps > 1 ? RTC_BUILD_QUALITY_LOW : RTC_BUILD_QUALITY_MEDIUM;
  RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_SUBDIVISION);
  rtcSetGeometryBuildQuality(geom, quality);
  for (unsigned int i=0; i<mesh->numEdges; i++) mesh->subdivlevel[i] = 4.0f;
  Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vec3fa), mesh->numVertices);
  for (unsigned int i=0;i<mesh->numVertices;i++) vertices[i] = mesh->positions[0][i];
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_LEVEL, 0, RTC_FORMAT_FLOAT, mesh->subdivlevel,      0, sizeof(float),        mesh->numEdges);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT,  mesh->position_indices, 0, sizeof(unsigned int), mesh->numEdges);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_FACE,  0, RTC_FORMAT_UINT,  mesh->verticesPerFace,  0, sizeof(unsigned int), mesh->numFaces);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_HOLE,  0, RTC_FORMAT_UINT,  mesh->holes,            0, sizeof(unsigned int), mesh->numFaces);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_EDGE_CREASE_INDEX,    0, RTC_FORMAT_UINT2, mesh->edge_creases,          0, 2*sizeof(unsigned int), mesh->numEdgeCreases);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT,   0, RTC_FORMAT_FLOAT, mesh->edge_crease_weights,   0, sizeof(float),          mesh->numEdgeCreases);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX,  0, RTC_FORMAT_UINT,  mesh->vertex_creases,        0, sizeof(unsigned int),   mesh->numVertexCreases);
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT, 0, RTC_FORMAT_FLOAT, mesh->vertex_crease_weights, 0, sizeof(float),          mesh->numVertexCreases);
  rtcSetGeometrySubdivisionMode(geom, 0, mesh->position_subdiv_mode);
  rtcCommitGeometry(geom);
  mesh->geom.geometry = geom;
  mesh->geom.geomID = rtcAttachGeometry(scene_out,geom);
}

void convertCurveGeometry(ISPCHairSet* hair, RTCScene scene_out)
{
  /* if more than a single timestep, mark object as dynamic */
  RTCBuildQuality quality = hair->numTimeSteps > 1 ? RTC_BUILD_QUALITY_LOW : RTC_BUILD_QUALITY_MEDIUM;
  /* create object */
  RTCGeometry geom = rtcNewGeometry (g_device, hair->type);
  rtcSetGeometryBuildQuality(geom, quality);
  /* generate vertex buffer */
  Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, sizeof(Vec3fa), hair->numVertices);
  for (unsigned int i=0;i<hair->numVertices;i++) vertices[i] = hair->positions[0][i];
  rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, hair->hairs, 0, sizeof(ISPCHair), hair->numHairs);
  if (hair->type != RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE)
    rtcSetGeometryTessellationRate(geom,(float)hair->tessellation_rate);
  rtcCommitGeometry(geom);
  hair->geom.geometry = geom;
  hair->geom.geomID = rtcAttachGeometry(scene_out,geom);
}

unsigned int getNumObjects(ISPCScene* scene_in) {
  return scene_in->numGeometries;
}

RTCScene createScene(ISPCScene* scene_in)
{
  RTCScene scene = rtcNewScene(g_device);
  rtcSetSceneBuildQuality(scene,RTC_BUILD_QUALITY_LOW);
  rtcSetSceneFlags(scene, RTC_SCENE_FLAG_DYNAMIC);
  return scene;
}

void createObject(const unsigned int i, ISPCScene* scene_in, RTCScene scene_out)
{
  ISPCGeometry* geometry = scene_in->geometries[i];
  
  if (geometry->type == SUBDIV_MESH) {
    convertSubdivMesh((ISPCSubdivMesh*) geometry, scene_out);
  }
  else if (geometry->type == TRIANGLE_MESH) {
    convertTriangleMesh((ISPCTriangleMesh*) geometry, scene_out);
  }
  else if (geometry->type == QUAD_MESH) {
    convertQuadMesh((ISPCQuadMesh*) geometry, scene_out);
  }
  else if (geometry->type == CURVES) {
    convertCurveGeometry((ISPCHairSet*) geometry, scene_out);
  }
  else
    assert(false);
}

Vec3fa lerpr(const Vec3fa& v0, const Vec3fa& v1, const float t) {
  return v0*(1.0f-t)+v1*t;
}


 void interpolateVertexBlock (int taskIndex, int threadIndex, const unsigned int numVertices,
                                  Vec3fa* vertices,
                                  const Vec3fa* const input0,
                                  const Vec3fa* const input1,
                                  const float tt)
 {
   const unsigned int b = taskIndex;
   const unsigned int startID = b*VERTEX_INTERPOLATION_BLOCK_SIZE;
   const unsigned int endID = min(startID + VERTEX_INTERPOLATION_BLOCK_SIZE,numVertices);
   for (unsigned int i=startID; i<endID; i++)
     vertices[i] = lerpr(input0[i],input1[i],tt);
 }


void interpolateVertices(RTCGeometry geom,
                         const unsigned int numVertices,
                         const Vec3fa* const input0,
                         const Vec3fa* const input1,
                         const float tt)
  {
    Vec3fa* vertices = (Vec3fa*) rtcGetGeometryBufferData(geom, RTC_BUFFER_TYPE_VERTEX, 0);
#if 1
    const unsigned int blocks = (numVertices+VERTEX_INTERPOLATION_BLOCK_SIZE-1) / VERTEX_INTERPOLATION_BLOCK_SIZE;
    parallel_for(size_t(0),size_t(blocks),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      interpolateVertexBlock((int)i,threadIndex,numVertices,vertices,input0,input1,tt);
  }); 
#else
    for (unsigned int i=0; i<numVertices; i++)
      vertices[i] = lerpr(input0[i],input1[i],tt);
#endif
    rtcUpdateGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX, 0);
    rtcCommitGeometry(geom);
  }

  void updateVertexData(const unsigned int ID,
                        ISPCScene* scene_in,
                        RTCScene scene_out,
                        const unsigned int keyFrameID,
                        const float tt)
  {
    ISPCGeometry* geometry = scene_in->geometries[ID];

    if (geometry->type == SUBDIV_MESH) {
      /* if static do nothing */
      if (((ISPCSubdivMesh*)geometry)->numTimeSteps <= 1) return;
      rtcCommitGeometry(geometry->geometry);
    }
    else if (geometry->type == TRIANGLE_MESH) {
      ISPCTriangleMesh* mesh = (ISPCTriangleMesh*)geometry;
      /* if static do nothing */
      if (mesh->numTimeSteps <= 1) return;
      /* interpolate two vertices from two timesteps */
      const unsigned int t0 = (keyFrameID+0) % mesh->numTimeSteps;
      const unsigned int t1 = (keyFrameID+1) % mesh->numTimeSteps;
      const Vec3fa* const input0 = mesh->positions[t0];
      const Vec3fa* const input1 = mesh->positions[t1];
      interpolateVertices(geometry->geometry, mesh->numVertices, input0, input1, tt);
    }
    else if (geometry->type == QUAD_MESH) {
      ISPCQuadMesh* mesh = (ISPCQuadMesh*)geometry;
      /* if static do nothing */
      if (mesh->numTimeSteps <= 1) return;
      /* interpolate two vertices from two timesteps */
      const unsigned int t0 = (keyFrameID+0) % mesh->numTimeSteps;
      const unsigned int t1 = (keyFrameID+1) % mesh->numTimeSteps;
      const Vec3fa* const input0 = mesh->positions[t0];
      const Vec3fa* const input1 = mesh->positions[t1];
      interpolateVertices(geometry->geometry, mesh->numVertices, input0, input1, tt);
    }
    else if (geometry->type == CURVES) {
      /* if static do nothing */
      if (((ISPCHairSet*)geometry)->numTimeSteps <= 1) return;
      rtcCommitGeometry(geometry->geometry);
    }
    else
      assert(false);
  }


void renderTileStandard(int taskIndex,
                        int threadIndex,
                        int* pixels,
                        const unsigned int width,
                        const unsigned int height,
                        const float time,
                        const ISPCCamera& camera,
                        const int numTilesX,
                        const int numTilesY)
{
  const unsigned int tileY = taskIndex / numTilesX;
  const unsigned int tileX = taskIndex - tileY * numTilesX;
  const unsigned int x0 = tileX * TILE_SIZE_X;
  const unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const unsigned int y0 = tileY * TILE_SIZE_Y;
  const unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  RayStats& stats = g_stats[threadIndex];

  Ray rays[TILE_SIZE_X*TILE_SIZE_Y];

  /* generate stream of primary rays */
  unsigned int N = 0;
  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    /* ISPC workaround for mask == 0 */
    

    /* initialize ray */
    Ray& ray = rays[N++];
    bool mask = 1; { // invalidates inactive rays
      ray.tnear() = mask ? 0.0f         : (float)(pos_inf);
      ray.tfar  = mask ? (float)(inf) : (float)(neg_inf);
    }
    init_Ray(ray, Vec3fa(camera.xfm.p), Vec3fa(normalize((float)x*camera.xfm.l.vx + (float)y*camera.xfm.l.vy + camera.xfm.l.vz)), ray.tnear(), ray.tfar);

    RayStats_addRay(stats);
  }

  RTCIntersectContext context;
  rtcInitIntersectContext(&context);
  context.flags = g_iflags_coherent;

  /* trace stream of rays */
  rtcIntersect1M(g_scene,&context,(RTCRayHit*)&rays,N,sizeof(Ray));

  /* shade stream of rays */
  Vec3fa colors[TILE_SIZE_X*TILE_SIZE_Y];
  N = 0;
  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    /* ISPC workaround for mask == 0 */
    
    Ray& ray = rays[N];

    Vec3fa Ng = ray.Ng;

    /* shading */
    Vec3fa color = Vec3fa(0.0f,1.0f,0.0f);
    if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
    {
      /* vertex normals */
#if VERTEX_NORMALS == 1
      ISPCGeometry* geometry = g_ispc_scene->geometries[ray.geomID];
      if (geometry->type == TRIANGLE_MESH)
      {
        ISPCTriangleMesh* mesh = (ISPCTriangleMesh*) geometry;
        if (mesh->normals)
        {
          ISPCTriangle* tri = &mesh->triangles[ray.primID];

          const Vec3fa n0 = mesh->normals[tri->v0];
          const Vec3fa n1 = mesh->normals[tri->v1];
          const Vec3fa n2 = mesh->normals[tri->v2];
          const Vec3fa n = n0*(1.0f-ray.u-ray.v) + n1*ray.u + n2*ray.v;
          Ng = Vec3fa(n.x,n.y,n.z);
        }
      }
#endif
      color = Vec3fa(abs(dot(ray.dir,normalize(Ng))));
    }
    colors[N++] = color;
  }


#if SHADOWS == 1
    /* do some hard shadows to point lights */
    if (g_ispc_scene->numLights)
    {
      for (unsigned int i=0; i<g_ispc_scene->numLights; i++)
      {
        /* init shadow/occlusion rays */
        for (unsigned int n=0;n<N;n++)
        {
          Ray& ray = rays[n];
          const bool valid = ray.geomID != RTC_INVALID_GEOMETRY_ID;
          const Vec3fa hitpos = ray.org + ray.dir * ray.tfar;
          const Vec3fa shadow_org = hitpos - ray.org;
          init_Ray(ray, ls_positions[i], shadow_org, 1E-4f, valid ? 0.99f : -1.0f);
          RayStats_addShadowRay(stats);
        }
        /* trace shadow rays */
#if 0
        for (unsigned int n=0;n<N;n++)
          rtcOccluded1(g_scene,&context,RTCRay_(rays[n]));
#else
        rtcOccluded1M(g_scene,&context,(RTCRay*)&rays,N,sizeof(Ray));
#endif
        /* modify pixel color based on occlusion */
        for (unsigned int n=0;n<N;n++)
          if (rays[n].tfar >= 0.0f)
            colors[n] = colors[n] * 0.1f;

      }
    }
#endif

  N = 0;
  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    /* ISPC workaround for mask == 0 */
    
    Vec3fa& color = colors[N++];
    /* write color to framebuffer */
    unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
    unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
    unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
    pixels[y*width+x] = (b << 16) + (g << 8) + r;
  }

}

/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera,
                         const int numTilesX,
                         const int numTilesY)
{
  renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}

/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
  /* create scene */
  g_scene = createScene(g_ispc_scene);

  /* create objects */
  unsigned int numObjects = getNumObjects(g_ispc_scene);

  for (unsigned int i=0;i<numObjects;i++)
    createObject(i,g_ispc_scene,g_scene);

  rtcCommitScene (g_scene);
}

#define TICKS_PER_SECOND 2000000000

inline double getTime() { return (double)clock() / TICKS_PER_SECOND; }


extern "C" void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
{
  const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
  }); 
}
  
/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
                           const unsigned int width,
                           const unsigned int height,
                           const float time,
                           const ISPCCamera& camera)
{

  /* =================================== */
  /* samples LS positions as pointlights */
  /* =================================== */

  if (g_ispc_scene->numLights)
  {
    if (ls_positions == nullptr) ls_positions = (Vec3fa*) alignedMalloc(g_ispc_scene->numLights*sizeof(Vec3fa),16);
    DifferentialGeometry dg;
    dg.geomID = 0;
    dg.primID = 0;
    dg.u = 0.0f;
    dg.v = 0.0f;
    dg.P  = Vec3fa(0.0f,0.0f,0.0f);
    dg.Ng = Vec3fa(0.0f,0.0f,0.0f);
    dg.Ns = dg.Ng;
    for (unsigned int i=0; i<g_ispc_scene->numLights; i++)
    {
      const Light* l = g_ispc_scene->lights[i];
      const Vec2f sample = Vec2f(0.0f,0.0f);
      Light_SampleRes ls = l->sample(l,dg,sample);
      ls_positions[i] = ls.dir * ls.dist;
    }
  }

  /* =============== */
  /* update geometry */
  /* =============== */

#if ENABLE_ANIM == 1

  if (animTime < 0.0f) animTime = getTime();
  const float atime = (float)((getTime() - animTime) * ANIM_FPS);
  const unsigned int intpart = (unsigned int)floor(atime);
  const double fracpart = atime - (double)intpart;
  const unsigned int keyFrameID = intpart;

  unsigned int numObjects = getNumObjects(g_ispc_scene);
  for (unsigned int i=0;i<numObjects;i++)
    updateVertexData(i, g_ispc_scene, g_scene, keyFrameID, (float)fracpart);

  /* =========== */
  /* rebuild bvh */
  /* =========== */

  rtcCommitScene(g_scene);

#endif
}

/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
  rtcReleaseScene (g_scene); g_scene = nullptr;
}

} // namespace embree