1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/math/random_sampler.h"
#include "../common/math/sampling.h"
#include "../common/tutorial/tutorial_device.h"
#include "../common/tutorial/scene_device.h"
namespace embree {
#define USE_INTERFACE 0 // 0 = stream, 1 = single rays/packets, 2 = single rays/packets using stream interface
#define AMBIENT_OCCLUSION_SAMPLES 64
//#define rtcOccluded rtcIntersect
//#define rtcOccluded1M rtcIntersect1M
#define SIMPLE_SHADING 1
#define OBJ_MATERIAL 1
extern "C" ISPCScene* g_ispc_scene;
extern "C" int g_instancing_mode;
/* scene data */
RTCScene g_scene = nullptr;
#define MAX_EDGE_LEVEL 64.0f
#define MIN_EDGE_LEVEL 4.0f
#define LEVEL_FACTOR 64.0f
inline float updateEdgeLevel( ISPCSubdivMesh* mesh, const Vec3fa& cam_pos, const unsigned int e0, const unsigned int e1)
{
const Vec3fa v0 = mesh->positions[0][mesh->position_indices[e0]];
const Vec3fa v1 = mesh->positions[0][mesh->position_indices[e1]];
const Vec3fa edge = v1-v0;
const Vec3fa P = 0.5f*(v1+v0);
const Vec3fa dist = cam_pos - P;
return max(min(LEVEL_FACTOR*(0.5f*length(edge)/length(dist)),MAX_EDGE_LEVEL),MIN_EDGE_LEVEL);
}
void updateEdgeLevelBuffer( ISPCSubdivMesh* mesh, const Vec3fa& cam_pos, unsigned int startID, unsigned int endID )
{
for (unsigned int f=startID; f<endID;f++) {
unsigned int e = mesh->face_offsets[f];
unsigned int N = mesh->verticesPerFace[f];
if (N == 4) /* fast path for quads */
for (unsigned int i=0; i<4; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%4);
else if (N == 3) /* fast path for triangles */
for (unsigned int i=0; i<3; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%3);
else /* fast path for general polygons */
for (unsigned int i=0; i<N; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%N);
}
}
#if defined(ISPC)
void updateSubMeshEdgeLevelBufferTask (int taskIndex, int threadIndex, ISPCSubdivMesh* mesh, const Vec3fa& cam_pos )
{
const unsigned int size = mesh->numFaces;
const unsigned int startID = ((taskIndex+0)*size)/taskCount;
const unsigned int endID = ((taskIndex+1)*size)/taskCount;
updateEdgeLevelBuffer(mesh,cam_pos,startID,endID);
}
void updateMeshEdgeLevelBufferTask (int taskIndex, int threadIndex, ISPCScene* scene_in, const Vec3fa& cam_pos )
{
ISPCGeometry* geometry = g_ispc_scene->geometries[taskIndex];
if (geometry->type != SUBDIV_MESH) return;
ISPCSubdivMesh* mesh = (ISPCSubdivMesh*) geometry;
unsigned int geomID = mesh->geom.geomID;
if (mesh->numFaces < 10000) {
updateEdgeLevelBuffer(mesh,cam_pos,0,mesh->numFaces);
rtcUpdateGeometryBuffer(geometry->geometry,RTC_BUFFER_TYPE_LEVEL,0);
rtcCommitGeometry(geometry->geometry);
}
}
#endif
void updateEdgeLevels(ISPCScene* scene_in, const Vec3fa& cam_pos)
{
/* first update small meshes */
#if defined(ISPC)
parallel_for(size_t(0),size_t( scene_in->numGeometries ),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
updateMeshEdgeLevelBufferTask((int)i,threadIndex,scene_in,cam_pos);
});
#endif
/* now update large meshes */
for (unsigned int g=0; g<scene_in->numGeometries; g++)
{
ISPCGeometry* geometry = g_ispc_scene->geometries[g];
if (geometry->type != SUBDIV_MESH) continue;
ISPCSubdivMesh* mesh = (ISPCSubdivMesh*) geometry;
#if defined(ISPC)
if (mesh->numFaces < 10000) continue;
parallel_for(size_t(0),size_t( (mesh->numFaces+4095)/4096 ),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
updateSubMeshEdgeLevelBufferTask((int)i,threadIndex,mesh,cam_pos);
});
#else
updateEdgeLevelBuffer(mesh,cam_pos,0,mesh->numFaces);
#endif
rtcUpdateGeometryBuffer(geometry->geometry,RTC_BUFFER_TYPE_LEVEL,0);
rtcCommitGeometry(geometry->geometry);
}
}
RTCScene convertScene(ISPCScene* scene_in)
{
RTCScene scene_out = ConvertScene(g_device, scene_in,RTC_BUILD_QUALITY_MEDIUM);
/* commit individual objects in case of instancing */
if (g_instancing_mode != ISPC_INSTANCING_NONE)
{
for (unsigned int i=0; i<scene_in->numGeometries; i++) {
ISPCGeometry* geometry = g_ispc_scene->geometries[i];
if (geometry->type == GROUP) rtcCommitScene(geometry->scene);
}
}
return scene_out;
}
/* renders a single pixel casting with ambient occlusion */
Vec3fa ambientOcclusionShading(int x, int y, Ray& ray, RayStats& stats)
{
Ray rays[AMBIENT_OCCLUSION_SAMPLES];
Vec3fa Ng = normalize(ray.Ng);
if (dot(ray.dir,Ng) > 0.0f) Ng = neg(Ng);
Vec3fa col = Vec3fa(min(1.0f,0.3f+0.8f*abs(dot(Ng,normalize(ray.dir)))));
/* calculate hit point */
float intensity = 0;
Vec3fa hitPos = ray.org + ray.tfar * ray.dir;
RandomSampler sampler;
RandomSampler_init(sampler,x,y,0);
/* enable only valid rays */
for (int i=0; i<AMBIENT_OCCLUSION_SAMPLES; i++)
{
/* sample random direction */
Vec2f s = RandomSampler_get2D(sampler);
Sample3f dir;
dir.v = cosineSampleHemisphere(s);
dir.pdf = cosineSampleHemispherePDF(dir.v);
dir.v = frame(Ng) * dir.v;
/* initialize shadow ray */
Ray& shadow = rays[i];
bool mask = 1; { // invalidate inactive rays
shadow.tnear() = mask ? 0.001f : (float)(pos_inf);
shadow.tfar = mask ? (float)(inf) : (float)(neg_inf);
}
init_Ray(shadow, hitPos, dir.v, shadow.tnear(), shadow.tfar);
RayStats_addShadowRay(stats);
}
RTCIntersectContext context;
rtcInitIntersectContext(&context);
context.flags = g_iflags_incoherent;
/* trace occlusion rays */
#if USE_INTERFACE == 0
rtcOccluded1M(g_scene,&context,(RTCRay*)&rays,AMBIENT_OCCLUSION_SAMPLES,sizeof(Ray));
#elif USE_INTERFACE == 1
for (unsigned int i=0; i<AMBIENT_OCCLUSION_SAMPLES; i++)
rtcOccluded1(g_scene,RTCRay_(rays[i]));
#else
for (unsigned int i=0; i<AMBIENT_OCCLUSION_SAMPLES; i++)
rtcOccluded1M(g_scene,&context,(RTCRay*)&rays[i],1,sizeof(Ray));
#endif
/* accumulate illumination */
for (int i=0; i<AMBIENT_OCCLUSION_SAMPLES; i++) {
if (rays[i].tfar >= 0.0f)
intensity += 1.0f;
}
/* shade pixel */
return col * (intensity/AMBIENT_OCCLUSION_SAMPLES);
}
void postIntersectGeometry(const Ray& ray, DifferentialGeometry& dg, ISPCGeometry* geometry, int& materialID)
{
if (geometry->type == TRIANGLE_MESH)
{
ISPCTriangleMesh* mesh = (ISPCTriangleMesh*) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == QUAD_MESH)
{
ISPCQuadMesh* mesh = (ISPCQuadMesh*) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == GRID_MESH)
{
ISPCGridMesh* mesh = (ISPCGridMesh*) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == SUBDIV_MESH)
{
ISPCSubdivMesh* mesh = (ISPCSubdivMesh*) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == CURVES)
{
ISPCHairSet* mesh = (ISPCHairSet*) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == POINTS)
{
ISPCPointSet* mesh = (ISPCPointSet*) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == GROUP) {
unsigned int geomID = ray.geomID; {
postIntersectGeometry(ray,dg,((ISPCGroup*) geometry)->geometries[geomID],materialID);
}
}
else
assert(false);
}
AffineSpace3fa calculate_interpolated_space (ISPCInstance* instance, float gtime)
{
if (instance->numTimeSteps == 1)
return AffineSpace3fa(instance->spaces[0]);
/* calculate time segment itime and fractional time ftime */
const int time_segments = instance->numTimeSteps-1;
const float time = gtime*(float)(time_segments);
const int itime = clamp((int)(floor(time)),(int)0,time_segments-1);
const float ftime = time - (float)(itime);
return (1.0f-ftime)*AffineSpace3fa(instance->spaces[itime+0]) + ftime*AffineSpace3fa(instance->spaces[itime+1]);
}
typedef ISPCInstance* ISPCInstancePtr;
inline int postIntersect(const Ray& ray, DifferentialGeometry& dg)
{
int materialID = 0;
unsigned int instID = ray.instID[0]; {
unsigned int geomID = ray.geomID; {
ISPCGeometry* geometry = nullptr;
if (g_instancing_mode != ISPC_INSTANCING_NONE) {
ISPCInstance* instance = (ISPCInstancePtr) g_ispc_scene->geometries[instID];
geometry = instance->child;
} else {
geometry = g_ispc_scene->geometries[geomID];
}
postIntersectGeometry(ray,dg,geometry,materialID);
}
}
if (g_instancing_mode != ISPC_INSTANCING_NONE)
{
unsigned int instID = ray.instID[0];
{
/* get instance and geometry pointers */
ISPCInstance* instance = (ISPCInstancePtr) g_ispc_scene->geometries[instID];
/* convert normals */
//AffineSpace3fa space = (1.0f-ray.time())*AffineSpace3fa(instance->space0) + ray.time()*AffineSpace3fa(instance->space1);
AffineSpace3fa space = calculate_interpolated_space(instance,ray.time());
dg.Ng = xfmVector(space,dg.Ng);
dg.Ns = xfmVector(space,dg.Ns);
}
}
return materialID;
}
inline Vec3fa face_forward(const Vec3fa& dir, const Vec3fa& _Ng) {
const Vec3fa Ng = _Ng;
return dot(dir,Ng) < 0.0f ? Ng : neg(Ng);
}
/* renders a single screen tile */
void renderTileStandard(int taskIndex,
int threadIndex,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0+TILE_SIZE_X,width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0+TILE_SIZE_Y,height);
RayStats& stats = g_stats[threadIndex];
Ray rays[TILE_SIZE_X*TILE_SIZE_Y];
/* generate stream of primary rays */
int N = 0;
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
/* ISPC workaround for mask == 0 */
RandomSampler sampler;
RandomSampler_init(sampler, x, y, 0);
/* initialize ray */
Ray& ray = rays[N++];
bool mask = 1; { // invalidates inactive rays
ray.tnear() = mask ? 0.0f : (float)(pos_inf);
ray.tfar = mask ? (float)(inf) : (float)(neg_inf);
}
init_Ray(ray, Vec3fa(camera.xfm.p), Vec3fa(normalize((float)x*camera.xfm.l.vx + (float)y*camera.xfm.l.vy + camera.xfm.l.vz)), ray.tnear(), ray.tfar, RandomSampler_get1D(sampler));
RayStats_addRay(stats);
}
RTCIntersectContext context;
rtcInitIntersectContext(&context);
context.flags = g_iflags_coherent;
/* trace stream of rays */
#if USE_INTERFACE == 0
rtcIntersect1M(g_scene,&context,(RTCRayHit*)&rays[0],N,sizeof(Ray));
#elif USE_INTERFACE == 1
for (unsigned int i=0; i<N; i++)
rtcIntersect1(g_scene,&context,RTCRayHit_(rays[i]));
#else
for (unsigned int i=0; i<N; i++)
rtcIntersect1M(g_scene,&context,(RTCRayHit*)&rays[i],1,sizeof(Ray));
#endif
/* shade stream of rays */
N = 0;
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
/* ISPC workaround for mask == 0 */
Ray& ray = rays[N++];
/* eyelight shading */
Vec3fa color = Vec3fa(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
#if SIMPLE_SHADING == 1
{
#if OBJ_MATERIAL == 1
Vec3fa Kd = Vec3fa(0.5f);
DifferentialGeometry dg;
dg.geomID = ray.geomID;
dg.primID = ray.primID;
dg.u = ray.u;
dg.v = ray.v;
dg.P = ray.org+ray.tfar*ray.dir;
dg.Ng = ray.Ng;
dg.Ns = ray.Ng;
int materialID = postIntersect(ray,dg);
dg.Ng = face_forward(ray.dir,normalize(dg.Ng));
dg.Ns = face_forward(ray.dir,normalize(dg.Ns));
/* shade */
if (g_ispc_scene->materials[materialID]->type == MATERIAL_OBJ) {
ISPCOBJMaterial* material = (ISPCOBJMaterial*) g_ispc_scene->materials[materialID];
Kd = Vec3fa(material->Kd);
}
color = Kd*dot(neg(ray.dir),dg.Ns);
#else
color = Vec3fa(abs(dot(ray.dir,normalize(ray.Ng))));
#endif
}
#else
color = ambientOcclusionShading(x,y,ray,g_stats[threadIndex]);
#endif
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
}
/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
}
extern "C" void renderFrameStandard (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
});
}
/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
/* create scene */
if (!g_scene) {
g_scene = convertScene(g_ispc_scene);
updateEdgeLevels(g_ispc_scene, camera.xfm.p);
rtcCommitScene (g_scene);
}
}
/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
rtcReleaseScene (g_scene); g_scene = nullptr;
}
} // namespace embree
|