1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/math/random_sampler.isph"
#include "../common/math/sampling.isph"
#include "../common/tutorial/tutorial_device.isph"
#include "../common/tutorial/scene_device.h"
#define USE_INTERFACE 0 // 0 = stream, 1 = single rays/packets, 2 = single rays/packets using stream interface
#define AMBIENT_OCCLUSION_SAMPLES 64
//#define rtcOccluded rtcIntersect
//#define rtcOccludedVM rtcIntersectVM
#define SIMPLE_SHADING 1
#define OBJ_MATERIAL 1
extern uniform ISPCScene* uniform g_ispc_scene;
extern uniform int g_instancing_mode;
/* scene data */
RTCScene g_scene = NULL;
#define MAX_EDGE_LEVEL 64.0f
#define MIN_EDGE_LEVEL 4.0f
#define LEVEL_FACTOR 64.0f
inline uniform float updateEdgeLevel( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos, const uniform unsigned int e0, const uniform unsigned int e1)
{
const uniform Vec3fa v0 = mesh->positions[0][mesh->position_indices[e0]];
const uniform Vec3fa v1 = mesh->positions[0][mesh->position_indices[e1]];
const uniform Vec3fa edge = v1-v0;
const uniform Vec3fa P = 0.5f*(v1+v0);
const uniform Vec3fa dist = cam_pos - P;
return max(min(LEVEL_FACTOR*(0.5f*length(edge)/length(dist)),MAX_EDGE_LEVEL),MIN_EDGE_LEVEL);
}
void updateEdgeLevelBuffer( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos, uniform unsigned int startID, uniform unsigned int endID )
{
for (uniform unsigned int f=startID; f<endID;f++) {
uniform unsigned int e = mesh->face_offsets[f];
uniform unsigned int N = mesh->verticesPerFace[f];
if (N == 4) /* fast path for quads */
for (uniform unsigned int i=0; i<4; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%4);
else if (N == 3) /* fast path for triangles */
for (uniform unsigned int i=0; i<3; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%3);
else /* fast path for general polygons */
for (uniform unsigned int i=0; i<N; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%N);
}
}
#if defined(ISPC)
task void updateSubMeshEdgeLevelBufferTask( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos )
{
const uniform unsigned int size = mesh->numFaces;
const uniform unsigned int startID = ((taskIndex+0)*size)/taskCount;
const uniform unsigned int endID = ((taskIndex+1)*size)/taskCount;
updateEdgeLevelBuffer(mesh,cam_pos,startID,endID);
}
task void updateMeshEdgeLevelBufferTask( uniform ISPCScene* uniform scene_in, const uniform Vec3fa& cam_pos )
{
uniform ISPCGeometry* uniform geometry = g_ispc_scene->geometries[taskIndex];
if (geometry->type != SUBDIV_MESH) return;
uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
uniform unsigned int geomID = mesh->geom.geomID;
if (mesh->numFaces < 10000) {
updateEdgeLevelBuffer(mesh,cam_pos,0,mesh->numFaces);
rtcUpdateGeometryBuffer(geometry->geometry,RTC_BUFFER_TYPE_LEVEL,0);
rtcCommitGeometry(geometry->geometry);
}
}
#endif
void updateEdgeLevels(uniform ISPCScene* uniform scene_in, const uniform Vec3fa& cam_pos)
{
/* first update small meshes */
#if defined(ISPC)
launch[ scene_in->numGeometries ] updateMeshEdgeLevelBufferTask(scene_in,cam_pos); sync;
#endif
/* now update large meshes */
for (uniform unsigned int g=0; g<scene_in->numGeometries; g++)
{
uniform ISPCGeometry* uniform geometry = g_ispc_scene->geometries[g];
if (geometry->type != SUBDIV_MESH) continue;
uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
#if defined(ISPC)
if (mesh->numFaces < 10000) continue;
launch[ (mesh->numFaces+4095)/4096 ] updateSubMeshEdgeLevelBufferTask(mesh,cam_pos); sync;
#else
updateEdgeLevelBuffer(mesh,cam_pos,0,mesh->numFaces);
#endif
rtcUpdateGeometryBuffer(geometry->geometry,RTC_BUFFER_TYPE_LEVEL,0);
rtcCommitGeometry(geometry->geometry);
}
}
RTCScene convertScene(uniform ISPCScene* uniform scene_in)
{
RTCScene scene_out = ConvertScene(g_device, scene_in,RTC_BUILD_QUALITY_MEDIUM);
/* commit individual objects in case of instancing */
if (g_instancing_mode != ISPC_INSTANCING_NONE)
{
for (uniform unsigned int i=0; i<scene_in->numGeometries; i++) {
ISPCGeometry* uniform geometry = g_ispc_scene->geometries[i];
if (geometry->type == GROUP) rtcCommitScene(geometry->scene);
}
}
return scene_out;
}
/* renders a single pixel casting with ambient occlusion */
Vec3f ambientOcclusionShading(int x, int y, Ray& ray, uniform RayStats& stats)
{
Ray rays[AMBIENT_OCCLUSION_SAMPLES];
Vec3f Ng = normalize(ray.Ng);
if (dot(ray.dir,Ng) > 0.0f) Ng = neg(Ng);
Vec3f col = make_Vec3f(min(1.0f,0.3f+0.8f*abs(dot(Ng,normalize(ray.dir)))));
/* calculate hit point */
float intensity = 0;
Vec3f hitPos = ray.org + ray.tfar * ray.dir;
RandomSampler sampler;
RandomSampler_init(sampler,x,y,0);
/* enable only valid rays */
for (uniform int i=0; i<AMBIENT_OCCLUSION_SAMPLES; i++)
{
/* sample random direction */
Vec2f s = RandomSampler_get2D(sampler);
Sample3f dir;
dir.v = cosineSampleHemisphere(s);
dir.pdf = cosineSampleHemispherePDF(dir.v);
dir.v = frame(Ng) * dir.v;
/* initialize shadow ray */
Ray& shadow = rays[i];
bool mask = __mask; unmasked { // invalidate inactive rays
shadow.tnear = mask ? 0.001f : (float)(pos_inf);
shadow.tfar = mask ? (float)(inf) : (float)(neg_inf);
}
init_Ray(shadow, hitPos, dir.v, shadow.tnear, shadow.tfar);
RayStats_addShadowRay(stats);
}
uniform RTCIntersectContext context;
rtcInitIntersectContext(&context);
context.flags = g_iflags_incoherent;
/* trace occlusion rays */
#if USE_INTERFACE == 0
rtcOccludedVM(g_scene,&context,(varying RTCRay* uniform)&rays,AMBIENT_OCCLUSION_SAMPLES,sizeof(Ray));
#elif USE_INTERFACE == 1
for (uniform unsigned int i=0; i<AMBIENT_OCCLUSION_SAMPLES; i++)
rtcOccludedV(g_scene,RTCRay_(rays[i]));
#else
for (uniform unsigned int i=0; i<AMBIENT_OCCLUSION_SAMPLES; i++)
rtcOccludedVM(g_scene,&context,(varying RTCRay* uniform)&rays[i],1,sizeof(Ray));
#endif
/* accumulate illumination */
for (uniform int i=0; i<AMBIENT_OCCLUSION_SAMPLES; i++) {
if (rays[i].tfar >= 0.0f)
intensity += 1.0f;
}
/* shade pixel */
return col * (intensity/AMBIENT_OCCLUSION_SAMPLES);
}
void postIntersectGeometry(const Ray& ray, DifferentialGeometry& dg, uniform ISPCGeometry* uniform geometry, int& materialID)
{
if (geometry->type == TRIANGLE_MESH)
{
uniform ISPCTriangleMesh* uniform mesh = (uniform ISPCTriangleMesh* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == QUAD_MESH)
{
uniform ISPCQuadMesh* uniform mesh = (uniform ISPCQuadMesh* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == GRID_MESH)
{
uniform ISPCGridMesh* uniform mesh = (uniform ISPCGridMesh* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == SUBDIV_MESH)
{
uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == CURVES)
{
uniform ISPCHairSet* uniform mesh = (uniform ISPCHairSet* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == POINTS)
{
uniform ISPCPointSet* uniform mesh = (uniform ISPCPointSet* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == GROUP) {
foreach_unique (geomID in ray.geomID) {
postIntersectGeometry(ray,dg,((uniform ISPCGroup*) geometry)->geometries[geomID],materialID);
}
}
else
assert(false);
}
AffineSpace3f calculate_interpolated_space (uniform ISPCInstance* uniform instance, float gtime)
{
if (instance->numTimeSteps == 1)
return make_AffineSpace3f(instance->spaces[0]);
/* calculate time segment itime and fractional time ftime */
const int time_segments = instance->numTimeSteps-1;
const float time = gtime*(float)(time_segments);
const int itime = clamp((int)(floor(time)),(varying int)0,time_segments-1);
const float ftime = time - (float)(itime);
return (1.0f-ftime)*make_AffineSpace3f(instance->spaces[itime+0]) + ftime*make_AffineSpace3f(instance->spaces[itime+1]);
}
typedef ISPCInstance* uniform ISPCInstancePtr;
inline int postIntersect(const Ray& ray, DifferentialGeometry& dg)
{
int materialID = 0;
foreach_unique (instID in ray.instID[0]) {
foreach_unique (geomID in ray.geomID) {
ISPCGeometry* uniform geometry = NULL;
if (g_instancing_mode != ISPC_INSTANCING_NONE) {
ISPCInstance* uniform instance = (ISPCInstancePtr) g_ispc_scene->geometries[instID];
geometry = instance->child;
} else {
geometry = g_ispc_scene->geometries[geomID];
}
postIntersectGeometry(ray,dg,geometry,materialID);
}
}
if (g_instancing_mode != ISPC_INSTANCING_NONE)
{
foreach_unique (instID in ray.instID[0])
{
/* get instance and geometry pointers */
ISPCInstance* uniform instance = (ISPCInstancePtr) g_ispc_scene->geometries[instID];
/* convert normals */
//AffineSpace3f space = (1.0f-ray.time)*make_AffineSpace3f(instance->space0) + ray.time*make_AffineSpace3f(instance->space1);
AffineSpace3f space = calculate_interpolated_space(instance,ray.time);
dg.Ng = xfmVector(space,dg.Ng);
dg.Ns = xfmVector(space,dg.Ns);
}
}
return materialID;
}
inline Vec3f face_forward(const Vec3f& dir, const Vec3f& _Ng) {
const Vec3f Ng = _Ng;
return dot(dir,Ng) < 0.0f ? Ng : neg(Ng);
}
/* renders a single screen tile */
void renderTileStandard(uniform int taskIndex,
uniform int threadIndex,
uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
const uniform unsigned int tileY = taskIndex / numTilesX;
const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
const uniform unsigned int x0 = tileX * TILE_SIZE_X;
const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);
uniform RayStats& stats = g_stats[threadIndex];
Ray rays[TILE_SIZE_X*TILE_SIZE_Y];
/* generate stream of primary rays */
uniform int N = 0;
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
/* ISPC workaround for mask == 0 */
if (all(__mask == 0)) continue;
RandomSampler sampler;
RandomSampler_init(sampler, x, y, 0);
/* initialize ray */
Ray& ray = rays[N++];
bool mask = __mask; unmasked { // invalidates inactive rays
ray.tnear = mask ? 0.0f : (float)(pos_inf);
ray.tfar = mask ? (float)(inf) : (float)(neg_inf);
}
init_Ray(ray, make_Vec3f(camera.xfm.p), make_Vec3f(normalize((float)x*camera.xfm.l.vx + (float)y*camera.xfm.l.vy + camera.xfm.l.vz)), ray.tnear, ray.tfar, RandomSampler_get1D(sampler));
RayStats_addRay(stats);
}
uniform RTCIntersectContext context;
rtcInitIntersectContext(&context);
context.flags = g_iflags_coherent;
/* trace stream of rays */
#if USE_INTERFACE == 0
rtcIntersectVM(g_scene,&context,(varying RTCRayHit* uniform)&rays[0],N,sizeof(Ray));
#elif USE_INTERFACE == 1
for (uniform unsigned int i=0; i<N; i++)
rtcIntersectV(g_scene,&context,RTCRayHit_(rays[i]));
#else
for (uniform unsigned int i=0; i<N; i++)
rtcIntersectVM(g_scene,&context,(varying RTCRayHit* uniform)&rays[i],1,sizeof(Ray));
#endif
/* shade stream of rays */
N = 0;
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
/* ISPC workaround for mask == 0 */
if (all(__mask == 0)) continue;
Ray& ray = rays[N++];
/* eyelight shading */
Vec3f color = make_Vec3f(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
#if SIMPLE_SHADING == 1
{
#if OBJ_MATERIAL == 1
Vec3f Kd = make_Vec3f(0.5f);
DifferentialGeometry dg;
dg.geomID = ray.geomID;
dg.primID = ray.primID;
dg.u = ray.u;
dg.v = ray.v;
dg.P = ray.org+ray.tfar*ray.dir;
dg.Ng = ray.Ng;
dg.Ns = ray.Ng;
int materialID = postIntersect(ray,dg);
dg.Ng = face_forward(ray.dir,normalize(dg.Ng));
dg.Ns = face_forward(ray.dir,normalize(dg.Ns));
/* shade */
if (g_ispc_scene->materials[materialID]->type == MATERIAL_OBJ) {
uniform ISPCOBJMaterial* material = (uniform ISPCOBJMaterial*) g_ispc_scene->materials[materialID];
Kd = make_Vec3f(material->Kd);
}
color = Kd*dot(neg(ray.dir),dg.Ns);
#else
color = make_Vec3f(abs(dot(ray.dir,normalize(ray.Ng))));
#endif
}
#else
color = ambientOcclusionShading(x,y,ray,g_stats[threadIndex]);
#endif
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
}
/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
}
export void renderFrameStandard (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
}
/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
/* create scene */
if (!g_scene) {
g_scene = convertScene(g_ispc_scene);
updateEdgeLevels(g_ispc_scene, camera.xfm.p);
rtcCommitScene (g_scene);
}
}
/* called by the C++ code for cleanup */
export void device_cleanup ()
{
rtcReleaseScene (g_scene); g_scene = NULL;
}
|