File: bvh_builder_device.cpp

package info (click to toggle)
embree 3.13.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 27,924 kB
  • sloc: cpp: 180,815; xml: 3,877; ansic: 2,957; python: 1,466; sh: 502; makefile: 229; csh: 42
file content (199 lines) | stat: -rw-r--r-- 6,204 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "../common/tutorial/tutorial_device.h"

namespace embree
{
  RTCScene g_scene  = nullptr;

  /* This function is called by the builder to signal progress and to
   * report memory consumption. */
  bool memoryMonitor(void* userPtr, ssize_t bytes, bool post) {
    return true;
  }

  bool buildProgress (void* userPtr, double f) {
    return true;
  }

  void splitPrimitive (const RTCBuildPrimitive* prim, unsigned int dim, float pos, RTCBounds* lprim, RTCBounds* rprim, void* userPtr)
  {
    assert(dim < 3);
    assert(prim->geomID == 0);
    *(BBox3fa*) lprim = *(BBox3fa*) prim;
    *(BBox3fa*) rprim = *(BBox3fa*) prim;
    (&lprim->upper_x)[dim] = pos;
    (&rprim->lower_x)[dim] = pos;
  }

  struct Node
  {
    virtual float sah() = 0;
  };

  struct InnerNode : public Node
  {
    BBox3fa bounds[2];
    Node* children[2];

    InnerNode() {
      bounds[0] = bounds[1] = empty;
      children[0] = children[1] = nullptr;
    }

    float sah() {
      return 1.0f + (area(bounds[0])*children[0]->sah() + area(bounds[1])*children[1]->sah())/area(merge(bounds[0],bounds[1]));
    }

    static void* create (RTCThreadLocalAllocator alloc, unsigned int numChildren, void* userPtr)
    {
      assert(numChildren == 2);
      void* ptr = rtcThreadLocalAlloc(alloc,sizeof(InnerNode),16);
      return (void*) new (ptr) InnerNode;
    }

    static void  setChildren (void* nodePtr, void** childPtr, unsigned int numChildren, void* userPtr)
    {
      assert(numChildren == 2);
      for (size_t i=0; i<2; i++)
        ((InnerNode*)nodePtr)->children[i] = (Node*) childPtr[i];
    }

    static void  setBounds (void* nodePtr, const RTCBounds** bounds, unsigned int numChildren, void* userPtr)
    {
      assert(numChildren == 2);
      for (size_t i=0; i<2; i++)
        ((InnerNode*)nodePtr)->bounds[i] = *(const BBox3fa*) bounds[i];
    }
  };

  struct LeafNode : public Node
  {
    unsigned id;
    BBox3fa bounds;

    LeafNode (unsigned id, const BBox3fa& bounds)
      : id(id), bounds(bounds) {}

    float sah() {
      return 1.0f;
    }

    static void* create (RTCThreadLocalAllocator alloc, const RTCBuildPrimitive* prims, size_t numPrims, void* userPtr)
    {
      assert(numPrims == 1);
      void* ptr = rtcThreadLocalAlloc(alloc,sizeof(LeafNode),16);
      return (void*) new (ptr) LeafNode(prims->primID,*(BBox3fa*)prims);
    }
  };

  void build(RTCBuildQuality quality, avector<RTCBuildPrimitive>& prims_i, char* cfg, size_t extraSpace = 0)
  {
    rtcSetDeviceMemoryMonitorFunction(g_device,memoryMonitor,nullptr);

    RTCBVH bvh = rtcNewBVH(g_device);

    avector<RTCBuildPrimitive> prims;
    prims.reserve(prims_i.size()+extraSpace);
    prims.resize(prims_i.size());

    /* settings for BVH build */
    RTCBuildArguments arguments = rtcDefaultBuildArguments();
    arguments.byteSize = sizeof(arguments);
    arguments.buildFlags = RTC_BUILD_FLAG_DYNAMIC;
    arguments.buildQuality = quality;
    arguments.maxBranchingFactor = 2;
    arguments.maxDepth = 1024;
    arguments.sahBlockSize = 1;
    arguments.minLeafSize = 1;
    arguments.maxLeafSize = 1;
    arguments.traversalCost = 1.0f;
    arguments.intersectionCost = 1.0f;
    arguments.bvh = bvh;
    arguments.primitives = prims.data();
    arguments.primitiveCount = prims.size();
    arguments.primitiveArrayCapacity = prims.capacity();
    arguments.createNode = InnerNode::create;
    arguments.setNodeChildren = InnerNode::setChildren;
    arguments.setNodeBounds = InnerNode::setBounds;
    arguments.createLeaf = LeafNode::create;
    arguments.splitPrimitive = splitPrimitive;
    arguments.buildProgress = buildProgress;
    arguments.userPtr = nullptr;
    
    for (size_t i=0; i<10; i++)
    {
      /* we recreate the prims array here, as the builders modify this array */
      for (size_t j=0; j<prims.size(); j++) prims[j] = prims_i[j];

      std::cout << "iteration " << i << ": building BVH over " << prims.size() << " primitives, " << std::flush;
      double t0 = getSeconds();
      Node* root = (Node*) rtcBuildBVH(&arguments);
      double t1 = getSeconds();
      const float sah = root ? root->sah() : 0.0f;
      std::cout << 1000.0f*(t1-t0) << "ms, " << 1E-6*double(prims.size())/(t1-t0) << " Mprims/s, sah = " << sah << " [DONE]" << std::endl;
    }

    rtcReleaseBVH(bvh);
  }

  /* called by the C++ code for initialization */
  extern "C" void device_init (char* cfg)
  {
    /* create random bounding boxes */
    const size_t N = 2300000;
    const size_t extraSpace = 1000000;
    avector<RTCBuildPrimitive> prims;
    prims.resize(N);
    for (size_t i=0; i<N; i++)
    {
      const float x = float(drand48());
      const float y = float(drand48());
      const float z = float(drand48());
      const Vec3fa p = 1000.0f*Vec3fa(x,y,z);
      const BBox3fa b = BBox3fa(p,p+Vec3fa(1.0f));

      RTCBuildPrimitive prim;
      prim.lower_x = b.lower.x;
      prim.lower_y = b.lower.y;
      prim.lower_z = b.lower.z;
      prim.geomID = 0;
      prim.upper_x = b.upper.x;
      prim.upper_y = b.upper.y;
      prim.upper_z = b.upper.z;
      prim.primID = (unsigned) i;
      prims[i] = prim;
    }

    std::cout << "Low quality BVH build:" << std::endl;
    build(RTC_BUILD_QUALITY_LOW,prims,cfg);

    std::cout << "Normal quality BVH build:" << std::endl;
    build(RTC_BUILD_QUALITY_MEDIUM,prims,cfg);

    std::cout << "High quality BVH build:" << std::endl;
    build(RTC_BUILD_QUALITY_HIGH,prims,cfg,extraSpace);
  }

  void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
  {
  }
  
  /* called by the C++ code to render */
  extern "C" void device_render (int* pixels,
                                 const int width,
                                 const int height,
                                 const float time,
                                 const ISPCCamera& camera)
  {
  }

  /* called by the C++ code for cleanup */
  extern "C" void device_cleanup () {
  }
}