1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial.h"
#include "../common/tutorial/benchmark_render.h"
#include "../common/tutorial/statistics.h"
#include <set>
#include "../../common/sys/mutex.h"
#include "../common/core/ray.h"
#include "../../kernels/geometry/triangle_triangle_intersector.h"
#include "clothModel.h"
namespace embree
{
void updateScene ();
// RTCDevice g_device = nullptr;
RTCScene g_scene = nullptr;
using SurfacePoint = std::pair<unsigned,unsigned>;
using Collision = std::pair<SurfacePoint, SurfacePoint>;
using Collisions = std::vector<Collision>;
Collisions sim_collisions;
// bool use_user_geometry = false;
std::vector<std::unique_ptr<collide2::Mesh>> meshes;
unsigned int clothID;
bool benchmark = false;
int numPhi = 45;
int numTheta = 2*numPhi;
size_t NX = 50;
size_t NZ = 50;
SpinLock mutex;
bool pause = false;
bool intersect_triangle_triangle (unsigned geomID0, unsigned primID0, unsigned geomID1, unsigned primID1)
{
//CSTAT(bvh_collide_prim_intersections1++);
/* special culling for scene intersection with itself */
if (geomID0 == geomID1 && primID0 == primID1) {
return false;
}
//CSTAT(bvh_collide_prim_intersections2++);
auto mesh0 = meshes[geomID0].get ();
auto mesh1 = meshes[geomID1].get ();
auto const & tri0 = (Triangle&) mesh0->tris_[primID0];
auto const & tri1 = (Triangle&) mesh1->tris_[primID1];
if (geomID0 == geomID1)
{
/* ignore intersection with topological neighbors */
const vint4 t0(tri0.v0,tri0.v1,tri0.v2,tri0.v2);
if (any(vint4(tri1.v0) == t0)) return false;
if (any(vint4(tri1.v1) == t0)) return false;
if (any(vint4(tri1.v2) == t0)) return false;
}
//CSTAT(bvh_collide_prim_intersections3++);
const Vec3fa a0 = mesh0->x_[tri0.v0];
const Vec3fa a1 = mesh0->x_[tri0.v1];
const Vec3fa a2 = mesh0->x_[tri0.v2];
const Vec3fa b0 = mesh1->x_[tri1.v0];
const Vec3fa b1 = mesh1->x_[tri1.v1];
const Vec3fa b2 = mesh1->x_[tri1.v2];
return isa::TriangleTriangleIntersector::intersect_triangle_triangle(a0,a1,a2,b0,b1,b2);
}
void CollideFunc (void* userPtr, RTCCollision* collisions, unsigned int num_collisions)
{
for (size_t i=0; i<num_collisions;)
{
bool intersect = intersect_triangle_triangle(collisions[i].geomID0,collisions[i].primID0,
collisions[i].geomID1,collisions[i].primID1);
if (intersect) i++;
else collisions[i] = collisions[--num_collisions];
}
if (num_collisions == 0)
return;
Lock<SpinLock> lock(mutex);
for (size_t i=0; i<num_collisions; i++)
{
const unsigned geomID0 = collisions[i].geomID0;
const unsigned primID0 = collisions[i].primID0;
const unsigned geomID1 = collisions[i].geomID1;
const unsigned primID1 = collisions[i].primID1;
static_cast<Collisions*>(userPtr)->push_back(std::make_pair(std::make_pair(geomID0,primID0),std::make_pair(geomID1,primID1)));
}
}
void triangle_bounds_func(const struct RTCBoundsFunctionArguments* args)
{
void* ptr = args->geometryUserPtr;
unsigned geomID = (unsigned) (size_t) ptr;
auto const & mesh = *meshes[geomID];
BBox3fa bounds = empty;
bounds.extend(mesh.x_[mesh.tris_[args->primID].v0]);
bounds.extend(mesh.x_[mesh.tris_[args->primID].v1]);
bounds.extend(mesh.x_[mesh.tris_[args->primID].v2]);
*(BBox3fa*) args->bounds_o = bounds;
}
void triangle_intersect_func(const RTCIntersectFunctionNArguments* args)
{
void* ptr = args->geometryUserPtr;
::Ray* ray = (::Ray*)args->rayhit;
unsigned int primID = args->primID;
unsigned geomID = (unsigned) (size_t) ptr;
auto const & mesh = *meshes[geomID];
auto & v0 = mesh.x_[mesh.tris_[args->primID].v0];
auto & v1 = mesh.x_[mesh.tris_[args->primID].v1];
auto & v2 = mesh.x_[mesh.tris_[args->primID].v2];
auto e1 = v0-v1;
auto e2 = v2-v0;
auto Ng = cross(e1,e2);
/* calculate denominator */
auto O = Vec3fa(ray->org);
auto D = Vec3fa(ray->dir);
auto C = v0 - O;
auto R = cross(D,C);
float den = dot(Ng,D);
float rcpDen = rcp(den);
/* perform edge tests */
float u = dot(R,e2)*rcpDen;
float v = dot(R,e1)*rcpDen;
/* perform backface culling */
bool valid = (den != 0.0f) & (u >= 0.0f) & (v >= 0.0f) & (u+v<=1.0f);
if (likely(!valid)) return;
/* perform depth test */
float t = dot(Vec3fa(Ng),C)*rcpDen;
valid &= (t > ray->tnear()) & (t < ray->tfar);
if (likely(!valid)) return;
/* update hit */
ray->tfar = t;
ray->u = u;
ray->v = v;
ray->geomID = geomID;
ray->primID = primID;
ray->Ng = Ng;
}
struct Tutorial : public TutorialApplication
{
Tutorial()
: TutorialApplication("collide",FEATURE_RTCORE)
{
registerOption("benchmark-collision", [] (Ref<ParseStream> cin, const FileName& path) {
benchmark = true;
}, "--benchmark-collision: benchmarks collision detection");
registerOption("complexity", [] (Ref<ParseStream> cin, const FileName& path) {
int N = cin->getInt();
numPhi = N;
numTheta = 2*numPhi;
NX = N;
NZ = N;
}, "--complexity: sets grid and sphere geometric complexity");
camera.from = Vec3fa(-2.5f,2.5f,-2.5f);
camera.to = Vec3fa(0.0f,0.0f,0.0f);
}
#if defined(USE_GLFW)
void keypressed(int key) override
{
if (key == 32 /* */) initializeClothPositions ((collide2::ClothModel &) (*meshes[clothID]));
if (key == 80 /*p*/) { pause = !pause; }
if (pause == true && key == 78 /*n*/) { updateScene (); }
else TutorialApplication::keypressed(key);
}
#endif
};
}
int main(int argc, char** argv) {
if (embree::TutorialBenchmark::benchmark(argc, argv)) {
return embree::TutorialBenchmark(embree::renderBenchFunc<embree::Tutorial>).main(argc, argv, "collide");
}
return embree::Tutorial().main(argc,argv);
}
|