File: grid_geometry_device.cpp

package info (click to toggle)
embree 3.13.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 27,924 kB
  • sloc: cpp: 180,815; xml: 3,877; ansic: 2,957; python: 1,466; sh: 502; makefile: 229; csh: 42
file content (684 lines) | stat: -rw-r--r-- 23,728 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "grid_geometry_device.h"

namespace embree {

/* configuration */
#define EDGE_LEVEL 257
#define GRID_RESOLUTION_X EDGE_LEVEL
#define GRID_RESOLUTION_Y EDGE_LEVEL

RTCScene g_scene = nullptr;
TutorialData data;

#if 1

#define NUM_INDICES 80
#define NUM_FACES 22
#define NUM_VERTICES (5+10+5)

/* this geometry is a sphere with a pentagon at the top, 5 quads connected 
to the edges, and triangles between the quads. This is mirrored to make a 
sphere topology. */
unsigned int sphere_indices[NUM_INDICES] =
{
  0, 1, 2, 3, 4,
  0, 14, 5,
  0, 5, 6, 1,
  1, 6, 7,
  1, 7, 8, 2,
  2, 8, 9,
  2, 9, 10, 3,
  3, 10, 11,
  3, 11, 12, 4,
  4, 12, 13,
  4, 13, 14, 0,

  15, 19, 18, 17, 16,
  15, 5, 14,
  15, 16, 6, 5,
  16, 7, 6,
  16, 17, 8, 7,
  17, 9, 8,
  17, 18, 10, 9,
  18, 11, 10,
  18, 19, 12, 11,
  19, 13, 12,
  19, 15, 14, 13,
};

unsigned int sphere_faces[NUM_FACES] = {
  5, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
  5, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
};

__aligned(16) Vec3fa sphere_vertices[NUM_VERTICES];

#else

#define NUM_INDICES 24
#define NUM_FACES 6
#define NUM_VERTICES 8

unsigned int sphere_indices[NUM_INDICES] = {
  0, 4, 5, 1,
  1, 5, 6, 2,
  2, 6, 7, 3,
  0, 3, 7, 4,
  4, 7, 6, 5,
  0, 1, 2, 3,
};

unsigned int sphere_faces[NUM_FACES] = {
  4, 4, 4, 4, 4, 4
};

__aligned(16) float sphere_vertices[NUM_VERTICES][4] =
{
  { -1.0f, -1.0f, -1.0f, 0.0f },
  {  1.0f, -1.0f, -1.0f, 0.0f },
  {  1.0f, -1.0f,  1.0f, 0.0f },
  { -1.0f, -1.0f,  1.0f, 0.0f },
  { -1.0f,  1.0f, -1.0f, 0.0f },
  {  1.0f,  1.0f, -1.0f, 0.0f },
  {  1.0f,  1.0f,  1.0f, 0.0f },
  { -1.0f,  1.0f,  1.0f, 0.0f }
};

#endif

struct Grid
{
  unsigned int startVertexID;
  int strideX, strideY;
  unsigned int width, height;
};

float displacement(const Vec3fa& P)
{
  float dN = 0.0f;
  for (float freq = 1.0f; freq<40.0f; freq*= 2) {
    float n = abs(noise(freq*P));
    dN += 1.4f*n*n/freq;
  }
  return dN;
}

float displacement_du(const Vec3fa& P, const Vec3fa& dPdu)
{
  const float du = 0.001f;
  return (displacement(P+du*dPdu)-displacement(P))/du;
}

float displacement_dv(const Vec3fa& P, const Vec3fa& dPdv)
{
  const float dv = 0.001f;
  return (displacement(P+dv*dPdv)-displacement(P))/dv;
}

void displacementFunction(const struct RTCDisplacementFunctionNArguments* args)
{
  const float* nx = args->Ng_x;
  const float* ny = args->Ng_y;
  const float* nz = args->Ng_z;
  float* px = args->P_x;
  float* py = args->P_y;
  float* pz = args->P_z;
  unsigned int N = args->N;
                                   
  for (unsigned int i=0; i<N; i++) {
    const Vec3fa P = Vec3fa(px[i],py[i],pz[i]);
    const Vec3fa Ng = Vec3fa(nx[i],ny[i],nz[i]);
    const Vec3fa dP = displacement(P)*Ng;
    px[i] += dP.x; py[i] += dP.y; pz[i] += dP.z;
  }
}


Vec3fa getVertex(GridMesh& gmesh, Grid& grid, int x, int y)
{
  int startVertexID = grid.startVertexID;
  int strideX = grid.strideX;
  int strideY = grid.strideY;
  assert(x >= 0 && x < (int)grid.width);
  assert(y >= 0 && y < (int)grid.height);
  return Vec3fa(gmesh.vertices[startVertexID + y*strideY + x*strideX]);
}

#if defined (ISPC)
Vec3fa getVertex(GridMesh& gmesh, Grid& grid, int x, int y)
{
  int startVertexID = grid.startVertexID;
  int strideX = grid.strideX;
  int strideY = grid.strideY;
  assert(x >= 0 && x < (int)grid.width);
  assert(y >= 0 && y < (int)grid.height);
  return Vec3fa(gmesh.vertices[startVertexID + y*strideY + x*strideX]);
}
#endif

Vec3fa getVertex(GridMesh& gmesh, RTCGeometry subdiv, Grid *hgrids, int firstHalfEdge, int f, int i, int x, int y, const Vec3fa& opt)
{
  int width  = (int)hgrids[firstHalfEdge].width;
  int height = (int)hgrids[firstHalfEdge].height;
  if (x < 0) {
    assert(x == -1 && y >= 0 && y < height);
    int edge = rtcGetGeometryPreviousHalfEdge(subdiv,firstHalfEdge);
    int oedge = rtcGetGeometryOppositeHalfEdge(subdiv,0,edge);
    if (oedge == edge) return opt; // return alternative vertex when requested vertex does not exist
    return getVertex(gmesh,hgrids[oedge],y,1);
  }
  else if (y < 0) {
    assert(y == -1 && x >= 0 && x < width);
    int oedge = rtcGetGeometryOppositeHalfEdge(subdiv,0,firstHalfEdge);
    if (oedge == firstHalfEdge) return opt; // return alternative vertex when requested vertex does not exist
    int noedge = rtcGetGeometryNextHalfEdge(subdiv,oedge);
    return getVertex(gmesh,hgrids[noedge],1,x);
  }
  else if (x >= width) {
    assert(x == width && y >= 0 && y < height);
    int nedge = rtcGetGeometryNextHalfEdge(subdiv,firstHalfEdge);
    return getVertex(gmesh,hgrids[nedge],y,hgrids[nedge].height-2);
  }
  else if (y >= height) {
    assert(y == height && x >= 0 && x < width);
    int pedge = rtcGetGeometryPreviousHalfEdge(subdiv,firstHalfEdge);
    return getVertex(gmesh,hgrids[pedge],hgrids[pedge].height-2,x);
  }
  else {
    return getVertex(gmesh,hgrids[firstHalfEdge],x,y);
  }
}

/* adds a displaced sphere to the scene */
void createGridGeometry (GridMesh& gmesh)
{
#if 1
  /* calculates top vertex ring */
  for (int i=0; i<5; i++) {
    const float theta = 45.0f*float(pi)/180.0f;
    const float phi = 72.0f*i*float(pi)/180.0f;
    sphere_vertices[i] = Vec3fa(sin(theta)*sin(phi),cos(theta),sin(theta)*cos(phi));
  }

  /* calculates center vertex ring */
  for (int i=0; i<10; i++) {
    const float theta = 90.0f*float(pi)/180.0f;
    const float phi = (18.0f+36.0f*i)*float(pi)/180.0f;
    sphere_vertices[5+i] = Vec3fa(sin(theta)*sin(phi),cos(theta),sin(theta)*cos(phi));
  }

  /* calculates bottom vertex ring */
  for (int i=0; i<5; i++) {
    const float theta = 135.0f*float(pi)/180.0f;
    const float phi = 72.0f*i*float(pi)/180.0f;
    sphere_vertices[5+10+i] = Vec3fa(sin(theta)*sin(phi),cos(theta),sin(theta)*cos(phi));
  }
#endif
  
  /* temporary subdivision geometry to evaluate base surface */
  RTCGeometry geomSubdiv = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_SUBDIVISION);
  rtcSetSharedGeometryBuffer(geomSubdiv, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sphere_vertices, 0, sizeof(Vec3fa),       NUM_VERTICES);
  rtcSetSharedGeometryBuffer(geomSubdiv, RTC_BUFFER_TYPE_INDEX,  0, RTC_FORMAT_UINT,   sphere_indices,  0, sizeof(unsigned int), NUM_INDICES);
  rtcSetSharedGeometryBuffer(geomSubdiv, RTC_BUFFER_TYPE_FACE,   0, RTC_FORMAT_UINT,   sphere_faces,    0, sizeof(unsigned int), NUM_FACES);
  rtcCommitGeometry(geomSubdiv);

  /* grid resolution has to be uneven as non-quads are split into multiple quads */
  assert((GRID_RESOLUTION_X%2) == 1);
  assert((GRID_RESOLUTION_Y%2) == 1);

  /* subgrid resolution for non-quads */
  unsigned int SUB_GRID_RESOLUTION_X = GRID_RESOLUTION_X/2+1;
  unsigned int SUB_GRID_RESOLUTION_Y = GRID_RESOLUTION_Y/2+1;

  /* grid resolution for quads */
  unsigned int QUAD_GRID_RESOLUTION_X = GRID_RESOLUTION_X;
  unsigned int QUAD_GRID_RESOLUTION_Y = GRID_RESOLUTION_Y;
    
  /* each quad becomes one grid, other faces become multiple grids */
  int numGrids = 0;
  int numVertices = 0;
  for (int f=0; f<NUM_FACES; f++)
  {
    if (sphere_faces[f] == 4)
    {
      numGrids++;
      numVertices += QUAD_GRID_RESOLUTION_X*QUAD_GRID_RESOLUTION_Y;
    }
    else
    {
      numGrids += sphere_faces[f];
      numVertices += sphere_faces[f]*SUB_GRID_RESOLUTION_X*SUB_GRID_RESOLUTION_Y;
    }
  }

  /* create grid geometry */
  gmesh.geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_GRID);
  gmesh.vertices = (Vec3fa *) rtcSetNewGeometryBuffer(gmesh.geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vec3fa),numVertices);
  gmesh.egrids = (RTCGrid *) rtcSetNewGeometryBuffer(gmesh.geom,RTC_BUFFER_TYPE_GRID,0,RTC_FORMAT_GRID,sizeof(RTCGrid),numGrids);
  gmesh.normals = (Vec3fa*) alignedMalloc(numVertices*sizeof(Vec3fa),16);

  Grid* hgrids = (Grid*) alignedMalloc(NUM_INDICES*sizeof(Grid),16);

  unsigned int g=0; // grid index for embree grids
  unsigned int h=0; // grid index for helper grids
  unsigned int startVertexIndex = 0;
  for (unsigned int f=0; f<NUM_FACES; f++) 
  {
    if (sphere_faces[f] == 4)
    {
      gmesh.egrids[g].startVertexID = startVertexIndex;
      gmesh.egrids[g].stride        = QUAD_GRID_RESOLUTION_X;
      gmesh.egrids[g].width         = QUAD_GRID_RESOLUTION_X;
      gmesh.egrids[g].height        = QUAD_GRID_RESOLUTION_Y;

      assert(h < NUM_INDICES);
      hgrids[h].startVertexID = startVertexIndex;
      hgrids[h].strideX       = 1;
      hgrids[h].strideY       = QUAD_GRID_RESOLUTION_X;
      hgrids[h].width         = QUAD_GRID_RESOLUTION_X/2+1;
      hgrids[h].height        = QUAD_GRID_RESOLUTION_Y/2+1;
      h++;

      assert(h < NUM_INDICES);
      hgrids[h].startVertexID = startVertexIndex+QUAD_GRID_RESOLUTION_X-1;
      hgrids[h].strideX       = QUAD_GRID_RESOLUTION_X;
      hgrids[h].strideY       = -1;
      hgrids[h].width         = QUAD_GRID_RESOLUTION_X/2+1;
      hgrids[h].height        = QUAD_GRID_RESOLUTION_Y/2+1;
      h++;

      assert(h < NUM_INDICES);
      hgrids[h].startVertexID = startVertexIndex+QUAD_GRID_RESOLUTION_X*QUAD_GRID_RESOLUTION_Y-1;
      hgrids[h].strideX       = -1;
      hgrids[h].strideY       = -(int)QUAD_GRID_RESOLUTION_X;
      hgrids[h].width         = QUAD_GRID_RESOLUTION_X/2+1;
      hgrids[h].height        = QUAD_GRID_RESOLUTION_Y/2+1;
      h++;

      assert(h < NUM_INDICES);
      hgrids[h].startVertexID = startVertexIndex+(QUAD_GRID_RESOLUTION_X-1)*QUAD_GRID_RESOLUTION_Y;
      hgrids[h].strideX       = -(int)QUAD_GRID_RESOLUTION_X;
      hgrids[h].strideY       = 1;
      hgrids[h].width         = QUAD_GRID_RESOLUTION_X/2+1;
      hgrids[h].height        = QUAD_GRID_RESOLUTION_Y/2+1;
      h++;

      /* calculate displaced vertices for quad-face */
      for (unsigned int y=0; y<QUAD_GRID_RESOLUTION_Y; y++)
      {
        for (unsigned int x=0; x<QUAD_GRID_RESOLUTION_X; x++)
        {
          float u = (float)x / (QUAD_GRID_RESOLUTION_X-1);
          float v = (float)y / (QUAD_GRID_RESOLUTION_Y-1);

          /* evaluate subdiv surface and displace points */
          Vec3fa P,dPdu,dPdv;
          rtcInterpolate1(geomSubdiv,f,u,v,RTC_BUFFER_TYPE_VERTEX,0,&P.x,&dPdu.x,&dPdv.x,3);
          P = P + displacement(P)*normalize(cross(dPdu,dPdv));

          /* write result to vertex buffer */
          gmesh.vertices[startVertexIndex + y * QUAD_GRID_RESOLUTION_X + x] = Vec3fa(P);
          gmesh.normals [startVertexIndex + y * QUAD_GRID_RESOLUTION_X + x] = Vec3fa(0.0f); // calculated later
        }
      }
      startVertexIndex += QUAD_GRID_RESOLUTION_X * QUAD_GRID_RESOLUTION_Y;
      g++;
    }
    else
    {
      /* iterate over all sub-faces */
      for (unsigned int i=0; i<sphere_faces[f]; i++)
      {
        gmesh.egrids[g].startVertexID = startVertexIndex;
        gmesh.egrids[g].stride        = SUB_GRID_RESOLUTION_X;
        gmesh.egrids[g].width         = SUB_GRID_RESOLUTION_X;
        gmesh.egrids[g].height        = SUB_GRID_RESOLUTION_Y;

        hgrids[h].startVertexID = startVertexIndex;
        hgrids[h].strideX       = 1;
        hgrids[h].strideY       = SUB_GRID_RESOLUTION_X;
        hgrids[h].width         = SUB_GRID_RESOLUTION_X;
        hgrids[h].height        = SUB_GRID_RESOLUTION_Y;
        h++;

        /* calculate displaced vertices for sub-face */
        for (unsigned int y=0; y<SUB_GRID_RESOLUTION_Y; y++)
        {
          for (unsigned int x=0; x<SUB_GRID_RESOLUTION_X; x++)
          {
            float u = (float)x / (SUB_GRID_RESOLUTION_X-1);
            float v = (float)y / (SUB_GRID_RESOLUTION_Y-1);

            /* encode UVs */
            const int h = (i >> 2) & 3, l = i & 3;
            const float U = 2.0f*l + 0.5f + u;
            const float V = 2.0f*h + 0.5f + v;

            /* evaluate subdiv surface and displace points */
            Vec3fa P,dPdu,dPdv;
            rtcInterpolate1(geomSubdiv,f,U,V,RTC_BUFFER_TYPE_VERTEX,0,&P.x,&dPdu.x,&dPdv.x,3);
            P = P + displacement(P)*normalize(cross(dPdu,dPdv));

            /* write result to vertex buffer */
            gmesh.vertices[startVertexIndex + y * SUB_GRID_RESOLUTION_X + x] = Vec3fa(P);
            gmesh.normals [startVertexIndex + y * SUB_GRID_RESOLUTION_X + x] = Vec3fa(0.0f); // calculated later
          }
        }
        startVertexIndex += SUB_GRID_RESOLUTION_X * SUB_GRID_RESOLUTION_Y;
        g++;
      }
    }
  }
  
  /* calculate normals by averaging normals of neighboring faces */
  h = 0;
  for (unsigned int f=0; f<NUM_FACES; f++) 
  {
    for (unsigned int i=0; i<sphere_faces[f]; i++)
    {
      for (int y=0; y<(int)SUB_GRID_RESOLUTION_Y; y++)
      {
        for (unsigned int x=0; x<SUB_GRID_RESOLUTION_X; x++)
        {
          Vec3fa p  = getVertex(gmesh,hgrids[h+i],x,y);
          Vec3fa pr = getVertex(gmesh,geomSubdiv,hgrids,h+i,f,i,x+1,y,p);
          Vec3fa pl = getVertex(gmesh,geomSubdiv,hgrids,h+i,f,i,x-1,y,p);
          Vec3fa pt = getVertex(gmesh,geomSubdiv,hgrids,h+i,f,i,x,y+1,p);
          Vec3fa pb = getVertex(gmesh,geomSubdiv,hgrids,h+i,f,i,x,y-1,p);
          Vec3fa Ng = Vec3fa(0.0f);
          Ng = Ng + cross(p-pr,p-pt);
          Ng = Ng + cross(p-pt,p-pl);
          Ng = Ng + cross(p-pl,p-pb);
          Ng = Ng + cross(p-pb,p-pr);
          Ng = normalize(Ng);
          Grid grid = hgrids[h+i];
          int index = grid.startVertexID + y*grid.strideY + x*grid.strideX;
          gmesh.normals[index] = Ng;
        }
      }
    }

    /* First special corner at (0,0). A different number than 4 faces may be 
       connected to this vertex. We need to walk all neighboring faces to 
       calculate a consistent normal. */
    for (unsigned int i=0; i<sphere_faces[f]; i++)
    {
      /* find start of ring */
      bool first = true;
      int startEdge = h+i;
      while (first || startEdge != h+i)
      {
        first = false;
        int oedge = rtcGetGeometryOppositeHalfEdge(geomSubdiv,0,startEdge);
        if (oedge == startEdge) break;
        startEdge = rtcGetGeometryNextHalfEdge(geomSubdiv,oedge);
      }
      
      /* walk ring beginning at start */
      first = true;
      int edge = startEdge;
      Vec3fa Ng = Vec3fa(0.0f);
      Vec3fa p = getVertex(gmesh,hgrids[edge],0,0);
      while (first || edge != startEdge)
      {
        first = false;
        int nedge = rtcGetGeometryNextHalfEdge(geomSubdiv,edge);
        int pedge = rtcGetGeometryPreviousHalfEdge(geomSubdiv,edge);
        Vec3fa p0 = getVertex(gmesh,hgrids[nedge],0,0);
        Vec3fa p1 = getVertex(gmesh,hgrids[pedge],0,0);
        Ng = Ng + cross(p-p0,p-p1);

        int oedge = rtcGetGeometryOppositeHalfEdge(geomSubdiv,0,pedge);
        if (oedge == pedge) break;
        edge = oedge;
      }
      
      Ng = normalize(Ng);
      gmesh.normals[hgrids[h+i].startVertexID] = Ng;
    }

    /* Last special corner at (width-1,height-1). This fixes the center corner 
       for non-quad faces. We need to walk all sub-faces to calculate a 
       consistent normal. */
    
    Vec3fa Ng = Vec3fa(0.0f);
    for (unsigned int i=0; i<sphere_faces[f]; i++)
    {
      Grid& grid = hgrids[h+i];
      Vec3fa p  = getVertex(gmesh,grid,grid.width-1,grid.height-1);
      Vec3fa pl = getVertex(gmesh,grid,grid.width-2,grid.height-1);
      Vec3fa pr = getVertex(gmesh,grid,grid.width-1,grid.height-2);
      Ng = Ng + cross(p-pl,p-pr);
    }
    Ng = normalize(Ng);

    for (unsigned int i=0; i<sphere_faces[f]; i++)
    {
      Grid& grid = hgrids[h+i];
      gmesh.normals[grid.startVertexID + (grid.height-1)*grid.strideY + (grid.width-1)*grid.strideX] = Ng;
    }
    
    h+=sphere_faces[f];
  }

  /* create normal debug geometry */
  gmesh.geomNormals = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE);
  Vec3ff *nvertices = (Vec3ff *) rtcSetNewGeometryBuffer(gmesh.geomNormals,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT4,sizeof(Vec3ff),4*numVertices);
  int*    curves    = (int    *) rtcSetNewGeometryBuffer(gmesh.geomNormals,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT   ,sizeof(int)   ,numVertices);

  h = 0;
  for (unsigned int f=0; f<NUM_FACES; f++) 
  {
    for (unsigned int i=0; i<sphere_faces[f]; i++)
    {
      for (int y=0; y<(int)SUB_GRID_RESOLUTION_Y; y++)
      {
        for (unsigned int x=0; x<SUB_GRID_RESOLUTION_X; x++)
        {
          Grid grid = hgrids[h+i];
          int index = grid.startVertexID + y*grid.strideY + x*grid.strideX;
          Vec3fa Ng = gmesh.normals[index];

          nvertices[4*index+0] = Vec3ff(gmesh.vertices[index], 0.0001f);
          nvertices[4*index+1] = Vec3ff(gmesh.vertices[index], 0.0001f);
          nvertices[4*index+2] = Vec3ff(gmesh.vertices[index]+0.01f*Vec3fa(Ng), 0.0001f);
          nvertices[4*index+3] = Vec3ff(gmesh.vertices[index]+0.01f*Vec3fa(Ng), 0.0001f);
          curves[index] = 4*index;
        }
      }
    }
    h+=sphere_faces[f];
  }

  /* we do not need this temporary data anymore */
  rtcReleaseGeometry(geomSubdiv);
  alignedFree(hgrids);
  
  rtcCommitGeometry(gmesh.geom);
}

/* adds a ground plane to the scene */
unsigned int addGroundPlane (RTCScene scene_i)
{
  /* create a triangulated plane with 2 triangles and 4 vertices */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* set vertices */
  Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),4);
  vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
  vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
  vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
  vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;

  /* set triangles */
  Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2);
  triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
  triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene_i,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
  /* create scene */
  TutorialData_Constructor(&data);
  g_scene = data.g_scene = rtcNewScene(g_device);
  rtcSetSceneFlags(data.g_scene,RTC_SCENE_FLAG_ROBUST);

  addGroundPlane(data.g_scene);

  createGridGeometry(data.gmesh);
  rtcAttachGeometry(data.g_scene,data.gmesh.geom);
  //rtcAttachGeometry(g_scene,gmesh.geomNormals);

  /* commit changes to scene */
  rtcCommitScene (data.g_scene);
}

Vec3fa mylerp(float f, const Vec3fa& a, const Vec3fa& b) { // FIXME: use lerpr, need to make ISPC lerpr and C++ lerpr compatible first
  return (1.0f-f)*a + f*b;
}

/* task that renders a single screen tile */
Vec3fa renderPixelStandard(const TutorialData& data,
                          float x, float y,
                          const ISPCCamera& camera,
                          RayStats& stats)
{
  RTCIntersectContext context;
  rtcInitIntersectContext(&context);

  /* initialize ray */
  Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);

  /* intersect ray with scene */
  rtcIntersect1(data.g_scene,&context,RTCRayHit_(ray));
  RayStats_addRay(stats);
  
  /* shade pixels */
  Vec3fa color = Vec3fa(0.0f);
  if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
  {
    Vec3fa diffuse = ray.geomID != 0 ? Vec3fa(0.9f,0.6f,0.5f) : Vec3fa(0.8f,0.0f,0.0f);
    color = color + diffuse*0.5f;
    Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));
    Vec3fa Ng = normalize(ray.Ng);

    if (ray.geomID == 1)
    {
      unsigned int startVertexID = data.gmesh.egrids[ray.primID].startVertexID;
      int width = data.gmesh.egrids[ray.primID].width;
      int height = data.gmesh.egrids[ray.primID].height;
      unsigned int stride = data.gmesh.egrids[ray.primID].stride;
      float U = ray.u*(width-1);
      float V = ray.v*(height-1);
      int x = min((int)floor(U),width -2);
      int y = min((int)floor(V),height-2);
      float u = U-x;
      float v = V-y;
      Vec3fa N00 = data.gmesh.normals[startVertexID+(y+0)*stride+(x+0)];
      Vec3fa N01 = data.gmesh.normals[startVertexID+(y+0)*stride+(x+1)];
      Vec3fa N10 = data.gmesh.normals[startVertexID+(y+1)*stride+(x+0)];
      Vec3fa N11 = data.gmesh.normals[startVertexID+(y+1)*stride+(x+1)];
      Vec3fa N0 = mylerp(u,N00,N01);
      Vec3fa N1 = mylerp(u,N10,N11);
      Ng = normalize(mylerp(v,N0,N1));
      //return Ng;
    }

    /* initialize shadow ray */
    Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf, 0.0f);

    /* trace shadow ray */
    rtcOccluded1(data.g_scene,&context,RTCRay_(shadow));
    RayStats_addShadowRay(stats);

    /* add light contribution */
    if (shadow.tfar >= 0.0f)
      color = color + diffuse*clamp(-(dot(lightDir,Ng)),0.0f,1.0f);
  }
  return color;
}

/* renders a single screen tile */
void renderTileStandard(int taskIndex,
                        int threadIndex,
                        int* pixels,
                        const unsigned int width,
                        const unsigned int height,
                        const float time,
                        const ISPCCamera& camera,
                        const int numTilesX,
                        const int numTilesY)
{
  const unsigned int tileY = taskIndex / numTilesX;
  const unsigned int tileX = taskIndex - tileY * numTilesX;
  const unsigned int x0 = tileX * TILE_SIZE_X;
  const unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const unsigned int y0 = tileY * TILE_SIZE_Y;
  const unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    /* calculate pixel color */
    Vec3fa color = renderPixelStandard(data,(float)x,(float)y,camera,g_stats[threadIndex]);

    /* write color to framebuffer */
    unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
    unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
    unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
    pixels[y*width+x] = (b << 16) + (g << 8) + r;
  }
}

/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera,
                         const int numTilesX,
                         const int numTilesY)
{
  renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}

extern "C" void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
{
  /* render image */
  const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
  }); 
}

/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
                           const unsigned int width,
                           const unsigned int height,
                           const float time,
                           const ISPCCamera& camera)
{
}

/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
  TutorialData_Destructor(&data);
}

} // namespace embree