File: multi_instanced_geometry_device.ispc

package info (click to toggle)
embree 3.13.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 27,924 kB
  • sloc: cpp: 180,815; xml: 3,877; ansic: 2,957; python: 1,466; sh: 502; makefile: 229; csh: 42
file content (487 lines) | stat: -rw-r--r-- 15,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "../common/tutorial/tutorial_device.isph"
#include "../common/math/random_sampler.isph"
#include "../common/math/sampling.isph"
#include "scene.isph"

RTCScene g_scene = NULL;
uniform InstanceLevels g_instanceLevels;

/* accumulation buffer */
uniform Vec3fa* uniform g_accu = NULL;
uniform unsigned int g_accu_width = 0;
uniform unsigned int g_accu_height = 0;
uniform unsigned int g_accu_count = 0;
uniform Vec3fa g_accu_vx;
uniform Vec3fa g_accu_vy;
uniform Vec3fa g_accu_vz;
uniform Vec3fa g_accu_p;
extern uniform bool g_changed;

#define STREAM_SIZE (TILE_SIZE_X * TILE_SIZE_Y)

/*
 * There is an issue in ISPC where foreach_tiled can generate
 * empty gangs. This is problematic when scalar operations
 * (e.g. uniform increment) run inside the loop.
 */
#define FOREACH_TILED_MITIGATION if (lanemask() == 0) { continue; }

/* 
 * Accumulate an instance transformation given an instance stack. 
 * We use this only for normal transformations in this example.
 */
LinearSpace3f accumulateNormalTransform(const Ray& ray,
                                        float time)
{
  LinearSpace3f transform = make_LinearSpace3f_identity();
  for (unsigned int level = 0; level < RTC_MAX_INSTANCE_LEVEL_COUNT && ray.instID[level] != RTC_INVALID_GEOMETRY_ID; ++level)
  {
    assert(level < g_instanceLevels.numLevels);
    const unsigned int instId = ray.instID[level];
    assert(instId < g_instanceLevels.numInstancesOnLevel[level]);
    LinearSpace3fa M = g_instanceLevels.normalTransforms[level][instId];
    transform = transform * make_LinearSpace3f(M);
  }
  return transform;
}


/*
 * A simplistic sky model consisting of a directional sun
 * and a constant sky.
 */
void sampleLightDirection(const Vec3fa& xi,
                          Vec3f& dir,
                          Vec3f& emission)
{
  const Vec3f sunDir = normalize(make_Vec3f(-1.f, 1.f, 1.f));
  const Vec3f sunEmission = make_Vec3f(1.f);
  const Vec3f skyEmission = make_Vec3f(.2f);
  const float skyPdf = 1.f/4.f/M_PI;
  const float sunWeight = .1f; // Put most samples into the sky, the sun will converge instantly.

  if (xi.z < sunWeight)
    dir = sunDir;
  else
  {
    // Uniform sphere sampling around +Y axis.
    const float theta = acos(1.f - 2.f * xi.x);
    const float phi = 2.f * M_PI * xi.y;
    const float st = sin(theta);
    dir = make_Vec3f(st * cos(phi), cos(theta), -st * sin(phi));
  }

  emission = skyEmission;
  float pdf = (1.f-sunWeight) * skyPdf;
  if (sunDir.x == dir.x && sunDir.y == dir.y && sunDir.z == dir.z)
  {
    emission = emission + sunEmission;
    pdf = pdf + sunWeight;
  }

  emission = emission * rcp(pdf);
}

/*
 * Safely invalidate a packet of rays.
 */
inline void invalidateRay(Ray& ray)
{
  // Initialize the whole ray so that it is invalid. This is important because
  // in streamed mode, active state of lanes is forgotten between ray
  // generation and traversal.
  unmasked {
    ray.org = make_Vec3f(0.f);
    ray.dir = make_Vec3f(0.f);
    ray.tnear = pos_inf;
    ray.tfar = neg_inf;
  }
}

/*
 * Pixel filter importance sampling.
 * This uses the Box-Mueller transform to obtain Gaussian samples.
 */
Vec2f sampleGaussianPixelFilter(RandomSampler& sampler)
{
  const float phi = 2.f * M_PI * RandomSampler_get1D(sampler);
  const float threeSigma = 1.f;
  const float sigma = threeSigma / 3.f;

  // Rejection sampling: we don't want any samples outside 3 sigma.
  float radius = (float)inf;
  while (radius <= 0.f || radius > threeSigma)
  {
    const float xi = RandomSampler_get1D(sampler);
    radius = sqrtf(sigma * (-2.f) * log(xi));
  }

  return make_Vec2f(radius * cos(phi), radius * sin(phi));
}

/*
 * Sample a primary ray.
 */
Ray samplePrimaryRay(unsigned int x,
                     unsigned int x0,
                     unsigned int y,
                     unsigned int y0,
                     const uniform ISPCCamera& camera,
                     RandomSampler& sampler,
                     uniform RayStats& stats)
{
  RandomSampler_init(sampler, (int)x, (int)y, g_accu_count);

  const unsigned int id = (y-y0) * TILE_SIZE_X + (x-x0);
  const Vec2f offset = sampleGaussianPixelFilter(sampler);
  const float fx = (float)x + 0.5f + offset.x;
  const float fy = (float)y + 0.5f + offset.y;
  const Vec3f o = make_Vec3f(camera.xfm.p);
  const Vec3f w = make_Vec3f(normalize(fx*camera.xfm.l.vx 
                                     + fy*camera.xfm.l.vy 
                                     + camera.xfm.l.vz));

  Ray ray;
  init_Ray(ray, o, w, 0.f, (float)inf);
  ray.id = id;
  RayStats_addRay(stats);
  return ray;
}

/* 
 * Make a new shadow ray.
 */
inline Ray makeShadowRay(const Ray& primary,
                         const Vec3f& lightDir,
                         uniform RayStats& stats)
{
  const Vec3f o = primary.org + primary.tfar * primary.dir;

  Ray ray;
  init_Ray(ray, o, lightDir, 0.001f, (float)inf);
  ray.id = -1;
  RayStats_addShadowRay(stats);
  return ray;
} 

/*
 * Our shader for this scene: Lambertian shading with normal display.
 */
Vec3f shader(const Ray& primaryRay, 
             const Ray& shadowRay,
             const Vec3f& lightDir,
             const Vec3f& emission)
{
  if (primaryRay.geomID == RTC_INVALID_GEOMETRY_ID || shadowRay.tfar < 0.f)
    return make_Vec3f(0.f);

  const LinearSpace3f xfm = accumulateNormalTransform(primaryRay, 0.f);
  Vec3f Ns = normalize(xfmVector(xfm, make_Vec3f(primaryRay.Ng)));

  const float cosThetaOut = dot(Ns, lightDir);
  const float cosThetaIn = -dot(Ns, primaryRay.dir);

  // Block transmission.
  if ((cosThetaOut >= 0) != (cosThetaIn >= 0))
    return make_Vec3f(0.f);

  // Make sure backfaces shade correctly.
  if (cosThetaIn < 0.f)
    Ns = -1.f * Ns;

  return emission
       * clamp(abs(cosThetaOut), 0.f, 1.f) 
       * (make_Vec3f(0.5f) + 0.5f * Ns);
}

/*
 * Convert a floating-point value in [0, 1] to 8 bit.
 */
inline unsigned int floatToByte(float channel)
{
  channel = 255.1f * clamp(channel, 0.f, 1.f);
  return 0xff & (unsigned int) channel;
}

/*
 * Pack an RGB8 color value from three floats.
 */
inline unsigned int packRGB8(const Vec3f& color)
{
  const unsigned int r = floatToByte(color.x);
  const unsigned int g = floatToByte(color.y);
  const unsigned int b = floatToByte(color.z);
  return (b << 16) + (g << 8) + r;
}

/*
 * Splat a color into the framebuffer.
 */
void splat(uniform int* uniform pixels,
           const uniform unsigned int width,
           unsigned int x,
           unsigned int y,
           const Vec3f& color)
{
  const unsigned int pixIdx = y * width + x;
  const Vec3fa accu_color = g_accu[pixIdx] + make_Vec3fa(color.x,color.y,color.z,1.0f); 
  g_accu[pixIdx] = accu_color;
  if (accu_color.w > 0)
  {
    float f = rcp(accu_color.w);
    pixels[pixIdx] = packRGB8(make_Vec3f(accu_color * f));
  }
}

/* 
 * Renders a single screen tile.
 */
void renderTileStream(uniform int* uniform pixels,
                      const uniform unsigned int width,
                      const uniform float time,
                      const uniform ISPCCamera& camera,
                      const uniform unsigned int x0,
                      const uniform unsigned int x1,
                      const uniform unsigned int y0,
                      const uniform unsigned int y1,
                      uniform IntersectContext& primaryContext,
                      uniform IntersectContext& shadowContext,
                      uniform RayStats& stats)
{
  RandomSampler sampler;
  Ray primary[STREAM_SIZE];
  Ray shadow[STREAM_SIZE];
  Vec3f lightDir[STREAM_SIZE];
  Vec3f emission[STREAM_SIZE];

  uniform unsigned int numPackets = 0;
  foreach_tiled(y = y0 ... y1, x = x0 ... x1)
  {
    FOREACH_TILED_MITIGATION

    primary[numPackets] = samplePrimaryRay(x, x0, y, y0, camera, sampler, stats);

    ++numPackets;
  }

  rtcIntersectVM(g_scene, 
                 &primaryContext.context,
                 (varying RTCRayHit* uniform)&primary,
                 numPackets,
                 sizeof(Ray));

  numPackets = 0;
  foreach_tiled(y = y0 ... y1, x = x0 ... x1)
  {
    FOREACH_TILED_MITIGATION

    // This is only needed for streaming mode, as we keep invalid
    // rays in flight. This call will invalidate instances that 
    // are not currently active.
    invalidateRay(shadow[numPackets]);

    if (primary[numPackets].geomID != RTC_INVALID_GEOMETRY_ID)
    {
      sampleLightDirection(RandomSampler_get3D(sampler),
                           lightDir[numPackets],
                           emission[numPackets]);
      shadow[numPackets] = makeShadowRay(primary[numPackets], lightDir[numPackets], stats);
    }

    ++numPackets;
  }

  rtcOccludedVM(g_scene, 
                &shadowContext.context, 
                (varying RTCRay* uniform)&shadow,
                numPackets, 
                sizeof(Ray));

  numPackets = 0;
  foreach_tiled(y = y0 ... y1, x = x0 ... x1)
  {
    FOREACH_TILED_MITIGATION

    const Vec3f color = shader(primary[numPackets],
                               shadow[numPackets],
                               lightDir[numPackets],
                               emission[numPackets]);

    splat(pixels, width, x, y, color);

    ++numPackets;
  }
}

/*
 * Render a single tile without streams.
 */
void renderTileNormal(uniform int* uniform pixels,
                      const uniform unsigned int width,
                      const uniform float time,
                      const uniform ISPCCamera& camera,
                      const uniform unsigned int x0,
                      const uniform unsigned int x1,
                      const uniform unsigned int y0,
                      const uniform unsigned int y1,
                      uniform IntersectContext& primaryContext,
                      uniform IntersectContext& shadowContext,
                      uniform RayStats& stats)
{
  RandomSampler sampler;

  foreach_tiled(y = y0 ... y1, x = x0 ... x1)
  {
    FOREACH_TILED_MITIGATION

    Ray primaryRay = samplePrimaryRay(x, x0, y, y0, camera, sampler, stats);
    rtcIntersectV(g_scene, &primaryContext.context, RTCRayHit_(primaryRay));

    Vec3f color = make_Vec3f(0.f);
    if (primaryRay.geomID != RTC_INVALID_GEOMETRY_ID)
    {
      Vec3f lightDir;
      Vec3f emission;
      sampleLightDirection(RandomSampler_get3D(sampler), lightDir, emission);
      Ray shadowRay = makeShadowRay(primaryRay, lightDir, stats);
      rtcOccludedV(g_scene, &shadowContext.context, RTCRay_(shadowRay));
      color = shader(primaryRay, shadowRay, lightDir, emission);
    }

    splat(pixels, width, x, y, color);
  }
}

// ======================================================================== //
// TUTORIAL API.
// ======================================================================== //

/*
 * A task that renders a single screen tile.
 */
task void renderTileTask(uniform int* uniform pixels,
  const uniform unsigned int width,
  const uniform unsigned int height,
  const uniform float time,
  const uniform ISPCCamera& camera,
  const uniform int numTilesX,
  const uniform int numTilesY)
{
  const uniform unsigned int tileY = taskIndex / numTilesX;
  const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
  const uniform unsigned int x0 = tileX * TILE_SIZE_X;
  const uniform unsigned int x1 = min(x0 + TILE_SIZE_X, width);
  const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
  const uniform unsigned int y1 = min(y0 + TILE_SIZE_Y, height);

  uniform IntersectContext primaryContext;
  uniform IntersectContext shadowContext;

  InitIntersectionContext(&primaryContext);
  InitIntersectionContext(&shadowContext);

  // Primary rays in this scene are coherent. This is not the case
  // for shadow rays, since there is a spherical environment light.
  primaryContext.context.flags = g_iflags_coherent; 

  if (g_mode == MODE_NORMAL) 
    renderTileNormal(pixels, width,
                     time, camera,
                     x0, x1, y0, y1,
                     primaryContext,
                     shadowContext,
                     g_stats[threadIndex]);
  else                       
    renderTileStream(pixels, width,
                     time, camera,
                     x0, x1, y0, y1,
                     primaryContext,
                     shadowContext,
                     g_stats[threadIndex]);
}

/* 
 * Called by the C++ code for initialization. 
 */
export void device_init(uniform int8* uniform cfg)
{
  g_scene = initializeScene(g_device, &g_instanceLevels);
}


export void renderFrameStandard(uniform int* uniform pixels,
                                const uniform unsigned int width,
                                const uniform unsigned int height,
                                const uniform float time,
                                const uniform ISPCCamera& camera)
{
  const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
}

/* 
 * Called by the C++ code to render. 
 */
export void device_render(uniform int* uniform pixels,
                          const uniform unsigned int width,
                          const uniform unsigned int height,
                          const uniform float time,
                          const uniform ISPCCamera& camera)
{
  if (g_accu_width != width || g_accu_height != height) {
    delete[] g_accu;
    g_accu = uniform new uniform Vec3fa[width*height];
    g_accu_width = width;
    g_accu_height = height;
    for (uniform unsigned int i=0; i<width*height; i++)
      g_accu[i] = make_Vec3fa(0.0f);
  }

  uniform bool camera_changed = g_changed; 
  g_changed = false;
  camera_changed |= ne(g_accu_vx,camera.xfm.l.vx); g_accu_vx = camera.xfm.l.vx;
  camera_changed |= ne(g_accu_vy,camera.xfm.l.vy); g_accu_vy = camera.xfm.l.vy;
  camera_changed |= ne(g_accu_vz,camera.xfm.l.vz); g_accu_vz = camera.xfm.l.vz;
  camera_changed |= ne(g_accu_p, camera.xfm.p);    g_accu_p  = camera.xfm.p;

  if (camera_changed)
  {
    g_accu_count=0;
    for (uniform unsigned int i=0; i<width*height; i++)
      g_accu[i] = make_Vec3fa(0.0f);
  }
  else
    g_accu_count++;
}

/*
 * Called by the C++ code for cleanup.
 */
export void device_cleanup ()
{
  rtcReleaseScene(g_scene);
  g_scene = NULL;
  cleanupScene();
  delete[] g_accu; 
  g_accu = NULL;
  g_accu_width = 0;
  g_accu_height = 0;
  g_accu_count = 0;
}

/*
 * This must be here for the linker to find, but we will not use it.
 */
void renderTileStandard(uniform int taskIndex,
                        uniform int threadIndex,
                        uniform int* uniform pixels,
                        const uniform unsigned int width,
                        const uniform unsigned int height,
                        const uniform float time,
                        const uniform ISPCCamera& camera,
                        const uniform int numTilesX,
                        const uniform int numTilesY) { }