1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial_device.isph"
#include "../common/math/random_sampler.isph"
#include "../common/math/sampling.isph"
#include "scene.isph"
RTCScene g_scene = NULL;
uniform InstanceLevels g_instanceLevels;
/* accumulation buffer */
uniform Vec3fa* uniform g_accu = NULL;
uniform unsigned int g_accu_width = 0;
uniform unsigned int g_accu_height = 0;
uniform unsigned int g_accu_count = 0;
uniform Vec3fa g_accu_vx;
uniform Vec3fa g_accu_vy;
uniform Vec3fa g_accu_vz;
uniform Vec3fa g_accu_p;
extern uniform bool g_changed;
#define STREAM_SIZE (TILE_SIZE_X * TILE_SIZE_Y)
/*
* There is an issue in ISPC where foreach_tiled can generate
* empty gangs. This is problematic when scalar operations
* (e.g. uniform increment) run inside the loop.
*/
#define FOREACH_TILED_MITIGATION if (lanemask() == 0) { continue; }
/*
* Accumulate an instance transformation given an instance stack.
* We use this only for normal transformations in this example.
*/
LinearSpace3f accumulateNormalTransform(const Ray& ray,
float time)
{
LinearSpace3f transform = make_LinearSpace3f_identity();
for (unsigned int level = 0; level < RTC_MAX_INSTANCE_LEVEL_COUNT && ray.instID[level] != RTC_INVALID_GEOMETRY_ID; ++level)
{
assert(level < g_instanceLevels.numLevels);
const unsigned int instId = ray.instID[level];
assert(instId < g_instanceLevels.numInstancesOnLevel[level]);
LinearSpace3fa M = g_instanceLevels.normalTransforms[level][instId];
transform = transform * make_LinearSpace3f(M);
}
return transform;
}
/*
* A simplistic sky model consisting of a directional sun
* and a constant sky.
*/
void sampleLightDirection(const Vec3fa& xi,
Vec3f& dir,
Vec3f& emission)
{
const Vec3f sunDir = normalize(make_Vec3f(-1.f, 1.f, 1.f));
const Vec3f sunEmission = make_Vec3f(1.f);
const Vec3f skyEmission = make_Vec3f(.2f);
const float skyPdf = 1.f/4.f/M_PI;
const float sunWeight = .1f; // Put most samples into the sky, the sun will converge instantly.
if (xi.z < sunWeight)
dir = sunDir;
else
{
// Uniform sphere sampling around +Y axis.
const float theta = acos(1.f - 2.f * xi.x);
const float phi = 2.f * M_PI * xi.y;
const float st = sin(theta);
dir = make_Vec3f(st * cos(phi), cos(theta), -st * sin(phi));
}
emission = skyEmission;
float pdf = (1.f-sunWeight) * skyPdf;
if (sunDir.x == dir.x && sunDir.y == dir.y && sunDir.z == dir.z)
{
emission = emission + sunEmission;
pdf = pdf + sunWeight;
}
emission = emission * rcp(pdf);
}
/*
* Safely invalidate a packet of rays.
*/
inline void invalidateRay(Ray& ray)
{
// Initialize the whole ray so that it is invalid. This is important because
// in streamed mode, active state of lanes is forgotten between ray
// generation and traversal.
unmasked {
ray.org = make_Vec3f(0.f);
ray.dir = make_Vec3f(0.f);
ray.tnear = pos_inf;
ray.tfar = neg_inf;
}
}
/*
* Pixel filter importance sampling.
* This uses the Box-Mueller transform to obtain Gaussian samples.
*/
Vec2f sampleGaussianPixelFilter(RandomSampler& sampler)
{
const float phi = 2.f * M_PI * RandomSampler_get1D(sampler);
const float threeSigma = 1.f;
const float sigma = threeSigma / 3.f;
// Rejection sampling: we don't want any samples outside 3 sigma.
float radius = (float)inf;
while (radius <= 0.f || radius > threeSigma)
{
const float xi = RandomSampler_get1D(sampler);
radius = sqrtf(sigma * (-2.f) * log(xi));
}
return make_Vec2f(radius * cos(phi), radius * sin(phi));
}
/*
* Sample a primary ray.
*/
Ray samplePrimaryRay(unsigned int x,
unsigned int x0,
unsigned int y,
unsigned int y0,
const uniform ISPCCamera& camera,
RandomSampler& sampler,
uniform RayStats& stats)
{
RandomSampler_init(sampler, (int)x, (int)y, g_accu_count);
const unsigned int id = (y-y0) * TILE_SIZE_X + (x-x0);
const Vec2f offset = sampleGaussianPixelFilter(sampler);
const float fx = (float)x + 0.5f + offset.x;
const float fy = (float)y + 0.5f + offset.y;
const Vec3f o = make_Vec3f(camera.xfm.p);
const Vec3f w = make_Vec3f(normalize(fx*camera.xfm.l.vx
+ fy*camera.xfm.l.vy
+ camera.xfm.l.vz));
Ray ray;
init_Ray(ray, o, w, 0.f, (float)inf);
ray.id = id;
RayStats_addRay(stats);
return ray;
}
/*
* Make a new shadow ray.
*/
inline Ray makeShadowRay(const Ray& primary,
const Vec3f& lightDir,
uniform RayStats& stats)
{
const Vec3f o = primary.org + primary.tfar * primary.dir;
Ray ray;
init_Ray(ray, o, lightDir, 0.001f, (float)inf);
ray.id = -1;
RayStats_addShadowRay(stats);
return ray;
}
/*
* Our shader for this scene: Lambertian shading with normal display.
*/
Vec3f shader(const Ray& primaryRay,
const Ray& shadowRay,
const Vec3f& lightDir,
const Vec3f& emission)
{
if (primaryRay.geomID == RTC_INVALID_GEOMETRY_ID || shadowRay.tfar < 0.f)
return make_Vec3f(0.f);
const LinearSpace3f xfm = accumulateNormalTransform(primaryRay, 0.f);
Vec3f Ns = normalize(xfmVector(xfm, make_Vec3f(primaryRay.Ng)));
const float cosThetaOut = dot(Ns, lightDir);
const float cosThetaIn = -dot(Ns, primaryRay.dir);
// Block transmission.
if ((cosThetaOut >= 0) != (cosThetaIn >= 0))
return make_Vec3f(0.f);
// Make sure backfaces shade correctly.
if (cosThetaIn < 0.f)
Ns = -1.f * Ns;
return emission
* clamp(abs(cosThetaOut), 0.f, 1.f)
* (make_Vec3f(0.5f) + 0.5f * Ns);
}
/*
* Convert a floating-point value in [0, 1] to 8 bit.
*/
inline unsigned int floatToByte(float channel)
{
channel = 255.1f * clamp(channel, 0.f, 1.f);
return 0xff & (unsigned int) channel;
}
/*
* Pack an RGB8 color value from three floats.
*/
inline unsigned int packRGB8(const Vec3f& color)
{
const unsigned int r = floatToByte(color.x);
const unsigned int g = floatToByte(color.y);
const unsigned int b = floatToByte(color.z);
return (b << 16) + (g << 8) + r;
}
/*
* Splat a color into the framebuffer.
*/
void splat(uniform int* uniform pixels,
const uniform unsigned int width,
unsigned int x,
unsigned int y,
const Vec3f& color)
{
const unsigned int pixIdx = y * width + x;
const Vec3fa accu_color = g_accu[pixIdx] + make_Vec3fa(color.x,color.y,color.z,1.0f);
g_accu[pixIdx] = accu_color;
if (accu_color.w > 0)
{
float f = rcp(accu_color.w);
pixels[pixIdx] = packRGB8(make_Vec3f(accu_color * f));
}
}
/*
* Renders a single screen tile.
*/
void renderTileStream(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform unsigned int x0,
const uniform unsigned int x1,
const uniform unsigned int y0,
const uniform unsigned int y1,
uniform IntersectContext& primaryContext,
uniform IntersectContext& shadowContext,
uniform RayStats& stats)
{
RandomSampler sampler;
Ray primary[STREAM_SIZE];
Ray shadow[STREAM_SIZE];
Vec3f lightDir[STREAM_SIZE];
Vec3f emission[STREAM_SIZE];
uniform unsigned int numPackets = 0;
foreach_tiled(y = y0 ... y1, x = x0 ... x1)
{
FOREACH_TILED_MITIGATION
primary[numPackets] = samplePrimaryRay(x, x0, y, y0, camera, sampler, stats);
++numPackets;
}
rtcIntersectVM(g_scene,
&primaryContext.context,
(varying RTCRayHit* uniform)&primary,
numPackets,
sizeof(Ray));
numPackets = 0;
foreach_tiled(y = y0 ... y1, x = x0 ... x1)
{
FOREACH_TILED_MITIGATION
// This is only needed for streaming mode, as we keep invalid
// rays in flight. This call will invalidate instances that
// are not currently active.
invalidateRay(shadow[numPackets]);
if (primary[numPackets].geomID != RTC_INVALID_GEOMETRY_ID)
{
sampleLightDirection(RandomSampler_get3D(sampler),
lightDir[numPackets],
emission[numPackets]);
shadow[numPackets] = makeShadowRay(primary[numPackets], lightDir[numPackets], stats);
}
++numPackets;
}
rtcOccludedVM(g_scene,
&shadowContext.context,
(varying RTCRay* uniform)&shadow,
numPackets,
sizeof(Ray));
numPackets = 0;
foreach_tiled(y = y0 ... y1, x = x0 ... x1)
{
FOREACH_TILED_MITIGATION
const Vec3f color = shader(primary[numPackets],
shadow[numPackets],
lightDir[numPackets],
emission[numPackets]);
splat(pixels, width, x, y, color);
++numPackets;
}
}
/*
* Render a single tile without streams.
*/
void renderTileNormal(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform unsigned int x0,
const uniform unsigned int x1,
const uniform unsigned int y0,
const uniform unsigned int y1,
uniform IntersectContext& primaryContext,
uniform IntersectContext& shadowContext,
uniform RayStats& stats)
{
RandomSampler sampler;
foreach_tiled(y = y0 ... y1, x = x0 ... x1)
{
FOREACH_TILED_MITIGATION
Ray primaryRay = samplePrimaryRay(x, x0, y, y0, camera, sampler, stats);
rtcIntersectV(g_scene, &primaryContext.context, RTCRayHit_(primaryRay));
Vec3f color = make_Vec3f(0.f);
if (primaryRay.geomID != RTC_INVALID_GEOMETRY_ID)
{
Vec3f lightDir;
Vec3f emission;
sampleLightDirection(RandomSampler_get3D(sampler), lightDir, emission);
Ray shadowRay = makeShadowRay(primaryRay, lightDir, stats);
rtcOccludedV(g_scene, &shadowContext.context, RTCRay_(shadowRay));
color = shader(primaryRay, shadowRay, lightDir, emission);
}
splat(pixels, width, x, y, color);
}
}
// ======================================================================== //
// TUTORIAL API.
// ======================================================================== //
/*
* A task that renders a single screen tile.
*/
task void renderTileTask(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
const uniform unsigned int tileY = taskIndex / numTilesX;
const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
const uniform unsigned int x0 = tileX * TILE_SIZE_X;
const uniform unsigned int x1 = min(x0 + TILE_SIZE_X, width);
const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
const uniform unsigned int y1 = min(y0 + TILE_SIZE_Y, height);
uniform IntersectContext primaryContext;
uniform IntersectContext shadowContext;
InitIntersectionContext(&primaryContext);
InitIntersectionContext(&shadowContext);
// Primary rays in this scene are coherent. This is not the case
// for shadow rays, since there is a spherical environment light.
primaryContext.context.flags = g_iflags_coherent;
if (g_mode == MODE_NORMAL)
renderTileNormal(pixels, width,
time, camera,
x0, x1, y0, y1,
primaryContext,
shadowContext,
g_stats[threadIndex]);
else
renderTileStream(pixels, width,
time, camera,
x0, x1, y0, y1,
primaryContext,
shadowContext,
g_stats[threadIndex]);
}
/*
* Called by the C++ code for initialization.
*/
export void device_init(uniform int8* uniform cfg)
{
g_scene = initializeScene(g_device, &g_instanceLevels);
}
export void renderFrameStandard(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
}
/*
* Called by the C++ code to render.
*/
export void device_render(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
if (g_accu_width != width || g_accu_height != height) {
delete[] g_accu;
g_accu = uniform new uniform Vec3fa[width*height];
g_accu_width = width;
g_accu_height = height;
for (uniform unsigned int i=0; i<width*height; i++)
g_accu[i] = make_Vec3fa(0.0f);
}
uniform bool camera_changed = g_changed;
g_changed = false;
camera_changed |= ne(g_accu_vx,camera.xfm.l.vx); g_accu_vx = camera.xfm.l.vx;
camera_changed |= ne(g_accu_vy,camera.xfm.l.vy); g_accu_vy = camera.xfm.l.vy;
camera_changed |= ne(g_accu_vz,camera.xfm.l.vz); g_accu_vz = camera.xfm.l.vz;
camera_changed |= ne(g_accu_p, camera.xfm.p); g_accu_p = camera.xfm.p;
if (camera_changed)
{
g_accu_count=0;
for (uniform unsigned int i=0; i<width*height; i++)
g_accu[i] = make_Vec3fa(0.0f);
}
else
g_accu_count++;
}
/*
* Called by the C++ code for cleanup.
*/
export void device_cleanup ()
{
rtcReleaseScene(g_scene);
g_scene = NULL;
cleanupScene();
delete[] g_accu;
g_accu = NULL;
g_accu_width = 0;
g_accu_height = 0;
g_accu_count = 0;
}
/*
* This must be here for the linker to find, but we will not use it.
*/
void renderTileStandard(uniform int taskIndex,
uniform int threadIndex,
uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY) { }
|