File: multiscene_geometry_device.cpp

package info (click to toggle)
embree 3.13.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 27,924 kB
  • sloc: cpp: 180,815; xml: 3,877; ansic: 2,957; python: 1,466; sh: 502; makefile: 229; csh: 42
file content (368 lines) | stat: -rw-r--r-- 14,378 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "../common/tutorial/tutorial_device.h"

namespace embree {
  
#if 0
  const int numSpheres = 1000;
  const int numPhi = 5;
#else
  const int numSpheres = 20;
  const int numPhi = 120;
  //const int numPhi = 256;
#endif
  const int numTheta = 2 * numPhi;
  
  /* scene data */
  RTCScene  g_scene = nullptr;
  RTCScene  g_scene_0 = nullptr;
  RTCScene  g_scene_1 = nullptr;
  RTCScene  g_scene_2 = nullptr;
  RTCScene* g_curr_scene = nullptr;
  Vec3fa position[numSpheres];
  Vec3fa colors0[numSpheres + 1];
  Vec3fa colors1[numSpheres/2 + 1];
  Vec3fa colors2[numSpheres/2 + 1];
  Vec3fa* colors;
  float radius[numSpheres];
  int disabledID = -1;
  int g_scene_id = 0;
  
  /* adds a sphere to the scene */
  unsigned int createSphere(RTCScene scene, RTCBuildQuality quality, const Vec3fa& pos, const float r)
  {
    /* create a triangulated sphere */
    RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
    rtcSetGeometryBuildQuality(geom, quality);
    
    /* map triangle and vertex buffer */
    Vertex* vertices = (Vertex*)rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vertex), numTheta * (numPhi + 1));
    Triangle* triangles = (Triangle*)rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(Triangle), 2 * numTheta * (numPhi - 1));
    
    /* create sphere geometry */
    int tri = 0;
    const float rcpNumTheta = rcp((float)numTheta);
    const float rcpNumPhi = rcp((float)numPhi);
    for (int phi = 0; phi <= numPhi; phi++)
    {
      for (int theta = 0; theta < numTheta; theta++)
      {
        const float phif = phi * float(pi) * rcpNumPhi;
        const float thetaf = theta * 2.0f * float(pi) * rcpNumTheta;
        Vertex& v = vertices[phi * numTheta + theta];
        v.x = pos.x + r * sin(phif) * sin(thetaf);
        v.y = pos.y + r * cos(phif);
        v.z = pos.z + r * sin(phif) * cos(thetaf);
      }
      if (phi == 0) continue;
      
      for (int theta = 1; theta <= numTheta; theta++)
      {
        int p00 = (phi - 1) * numTheta + theta - 1;
        int p01 = (phi - 1) * numTheta + theta % numTheta;
        int p10 = phi * numTheta + theta - 1;
        int p11 = phi * numTheta + theta % numTheta;
        
        if (phi > 1) {
          triangles[tri].v0 = p10;
          triangles[tri].v1 = p01;
          triangles[tri].v2 = p00;
          tri++;
        }
        
        if (phi < numPhi) {
          triangles[tri].v0 = p11;
          triangles[tri].v1 = p01;
          triangles[tri].v2 = p10;
          tri++;
        }
      }
    }
    
    rtcCommitGeometry(geom);
    unsigned int geomID = rtcAttachGeometry(scene, geom);
    rtcReleaseGeometry(geom);
    return geomID;
  }
  
  /* adds a ground plane to the scene */
  unsigned int addGroundPlane(RTCScene scene_i)
  {
    /* create a triangulated plane with 2 triangles and 4 vertices */
    RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
    
    /* set vertices */
    Vertex* vertices = (Vertex*)rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vertex), 4);
    vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
    vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
    vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
    vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;
    
    /* set triangles */
    Triangle* triangles = (Triangle*)rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(Triangle), 2);
    triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
    triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
    
    rtcCommitGeometry(geom);
    unsigned int geomID = rtcAttachGeometry(scene_i, geom);
    rtcReleaseGeometry(geom);
    return geomID;
  }
  
  /* called by the C++ code for initialization */
  extern "C" void device_init(char* cfg)
  {
    /* create scene */
    g_scene_0 = rtcNewScene(g_device);
    g_scene_1 = rtcNewScene(g_device);
    g_scene_2 = rtcNewScene(g_device);

    rtcSetSceneFlags(g_scene_0,RTC_SCENE_FLAG_DYNAMIC | RTC_SCENE_FLAG_ROBUST);
    rtcSetSceneBuildQuality(g_scene_0,RTC_BUILD_QUALITY_LOW);

    rtcSetSceneFlags(g_scene_1,RTC_SCENE_FLAG_DYNAMIC | RTC_SCENE_FLAG_ROBUST);
    rtcSetSceneBuildQuality(g_scene_1,RTC_BUILD_QUALITY_LOW);
    
    //rtcSetSceneFlags(g_scene_2,RTC_SCENE_FLAG_DYNAMIC | RTC_SCENE_FLAG_ROBUST);
    //rtcSetSceneBuildQuality(g_scene_2,RTC_BUILD_QUALITY_LOW);
    
    /* create some triangulated spheres */
    for (int i = 0; i < numSpheres; i++)
    {
      const float phi = i * 2.0f * float(pi) / numSpheres;
      const float r = 2.0f * float(pi) / numSpheres;
      const Vec3fa p = 2.0f * Vec3fa(sin(phi), 0.0f, -cos(phi));
      //RTCBuildQuality quality = i%3 == 0 ? RTC_BUILD_QUALITY_MEDIUM : i%3 == 1 ? RTC_BUILD_QUALITY_REFIT : RTC_BUILD_QUALITY_LOW;
      RTCBuildQuality quality = i % 2 ? RTC_BUILD_QUALITY_REFIT : RTC_BUILD_QUALITY_LOW;
      //RTCBuildQuality quality = RTC_BUILD_QUALITY_REFIT;
      //RTCBuildQuality quality = RTC_BUILD_QUALITY_LOW;
      int id0 = createSphere(g_scene_0, quality, p, r);
      position[id0] = p;
      radius[id0] = r;
      colors0[id0].x = (i % 16 + 1) / 17.0f;
      colors0[id0].y = (i % 8 + 1) / 9.0f;
      colors0[id0].z = (i % 4 + 1) / 5.0f;
      if (i < (numSpheres / 2)) {
        int id1 = rtcAttachGeometry(g_scene_1, rtcGetGeometry (g_scene_0, id0));
        colors1[id1] = colors0[id0];
      }
      else {
        int id2 = rtcAttachGeometry(g_scene_2, rtcGetGeometry(g_scene_0, id0));
        colors2[id2] = colors0[id0];
      }
    }
    
    /* add ground plane to scene */
    int id0 = addGroundPlane(g_scene_0);
    int id1 = rtcAttachGeometry(g_scene_1, rtcGetGeometry(g_scene_0, id0));
    int id2 = rtcAttachGeometry(g_scene_2, rtcGetGeometry(g_scene_0, id0));
    colors0[id0] = Vec3fa(1.0f, 1.0f, 1.0f);
    colors1[id1] = colors0[id0];
    colors2[id2] = colors0[id0];
    
    /* commit changes to scene */
    rtcCommitScene(g_scene_0);
    rtcCommitScene(g_scene_1);
    rtcCommitScene(g_scene_2);
    
    /* First render scene1 to check if it got properly
     * committed even though scene_0 containing all
     * geometries got already build. */
    g_scene_id = 1;
  }
  
  /* animates the sphere */
  void animateSphere(int taskIndex, int threadIndex, Vertex* vertices,
                     const float rcpNumTheta,
                     const float rcpNumPhi,
                     const Vec3fa& pos,
                     const float r,
                     const float f)
  {
    int phi = taskIndex;
    for (unsigned int theta = 0; theta < numTheta; theta++)
    {
      Vertex* v = &vertices[phi * numTheta + theta];
      const float phif = phi * float(pi) * rcpNumPhi;
      const float thetaf = theta * 2.0f * float(pi) * rcpNumTheta;
      v->x = pos.x + r * sin(f * phif) * sin(thetaf);
      v->y = pos.y + r * cos(phif);
      v->z = pos.z + r * sin(f * phif) * cos(thetaf);
    }
  }
  
  /* task that renders a single screen tile */
  Vec3fa renderPixelStandard(float x, float y, const ISPCCamera& camera, RayStats& stats)
  {
    /* initialize ray */
    Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x * camera.xfm.l.vx + y * camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);
    
    /* intersect ray with scene */
    RTCIntersectContext context;
    rtcInitIntersectContext(&context);
    rtcIntersect1(*g_curr_scene, &context, RTCRayHit_(ray));
    RayStats_addRay(stats);
    
    /* shade pixels */
    Vec3fa color = Vec3fa(0.0f);
    if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
    {
      Vec3fa diffuse = colors[ray.geomID];
      color = color + diffuse * 0.1f;
      Vec3fa lightDir = normalize(Vec3fa(-1, -1, -1));
      
      /* initialize shadow ray */
      Ray shadow(ray.org + ray.tfar * ray.dir, neg(lightDir), 0.001f, inf);
      
      /* trace shadow ray */
      rtcOccluded1(*g_curr_scene, &context, RTCRay_(shadow));
      RayStats_addShadowRay(stats);
      
      /* add light contribution */
      if (shadow.tfar >= 0.0f)
        color = color + diffuse * clamp(-dot(lightDir, normalize(ray.Ng)), 0.0f, 1.0f);
    }
    return color;
  }
  
  /* renders a single screen tile */
  void renderTileStandard(int taskIndex,
                          int threadIndex,
                          int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera,
                          const int numTilesX,
                          const int numTilesY)
  {
    const unsigned int tileY = taskIndex / numTilesX;
    const unsigned int tileX = taskIndex - tileY * numTilesX;
    const unsigned int x0 = tileX * TILE_SIZE_X;
    const unsigned int x1 = min(x0 + TILE_SIZE_X, width);
    const unsigned int y0 = tileY * TILE_SIZE_Y;
    const unsigned int y1 = min(y0 + TILE_SIZE_Y, height);
    
    for (unsigned int y = y0; y < y1; y++) for (unsigned int x = x0; x < x1; x++)
                                           {
                                             /* calculate pixel color */
                                             Vec3fa color = renderPixelStandard((float)x, (float)y, camera, g_stats[threadIndex]);
                                             
                                             /* write color to framebuffer */
                                             unsigned int r = (unsigned int)(255.0f * clamp(color.x, 0.0f, 1.0f));
                                             unsigned int g = (unsigned int)(255.0f * clamp(color.y, 0.0f, 1.0f));
                                             unsigned int b = (unsigned int)(255.0f * clamp(color.z, 0.0f, 1.0f));
                                             pixels[y * width + x] = (b << 16) + (g << 8) + r;
                                           }
  }
  
  /* task that renders a single screen tile */
  void renderTileTask(int taskIndex, int threadIndex, int* pixels,
                      const unsigned int width,
                      const unsigned int height,
                      const float time,
                      const ISPCCamera& camera,
                      const int numTilesX,
                      const int numTilesY)
  {
    renderTileStandard(taskIndex, threadIndex, pixels, width, height, time, camera, numTilesX, numTilesY);
  }
  
  /* animates a sphere */
  void animateSphere(int id, float time)
  {
    /* animate vertices */
    RTCGeometry geom = rtcGetGeometry(g_scene_0, id);
    Vertex* vertices = (Vertex*)rtcGetGeometryBufferData(geom, RTC_BUFFER_TYPE_VERTEX, 0);
    const float rcpNumTheta = rcp((float)numTheta);
    const float rcpNumPhi = rcp((float)numPhi);
    const Vec3fa pos = position[id];
    const float r = radius[id];
    const float f = 2.0f * (1.0f + 0.5f * sin(time));
    
    /* loop over all vertices */
#if 1 // enables parallel execution
    parallel_for(size_t(0), size_t(numPhi + 1), [&](const range<size_t>& range) {
        const int threadIndex = (int)TaskScheduler::threadIndex();
        for (size_t i = range.begin(); i < range.end(); i++)
          animateSphere((int)i, threadIndex, vertices, rcpNumTheta, rcpNumPhi, pos, r, f);
      });
#else
    for (unsigned int phi = 0; phi < numPhi + 1; phi++) for (int theta = 0; theta < numTheta; theta++)
                                                        {
                                                          Vertex* v = &vertices[phi * numTheta + theta];
                                                          const float phif = phi * float(pi) * rcpNumPhi;
                                                          const float thetaf = theta * 2.0f * float(pi) * rcpNumTheta;
                                                          v->x = pos.x + r * sin(f * phif) * sin(thetaf);
                                                          v->y = pos.y + r * cos(phif);
                                                          v->z = pos.z + r * sin(f * phif) * cos(thetaf);
                                                        }
#endif
    
    /* commit mesh */
    rtcUpdateGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0);
    rtcCommitGeometry(geom);
  }

  extern "C" void renderFrameStandard(int* pixels,
                           const unsigned int width,
                           const unsigned int height,
                           const float time,
                           const ISPCCamera & camera)
  {
    /* render all pixels */
    const int numTilesX = (width + TILE_SIZE_X - 1) / TILE_SIZE_X;
    const int numTilesY = (height + TILE_SIZE_Y - 1) / TILE_SIZE_Y;
    parallel_for(size_t(0), size_t(numTilesX * numTilesY), [&](const range<size_t>& range) {
        const int threadIndex = (int)TaskScheduler::threadIndex();
        for (size_t i = range.begin(); i < range.end(); i++)
          renderTileTask((int)i, threadIndex, pixels, width, height, time, camera, numTilesX, numTilesY);
      });
  }
  
  /* called by the C++ code to render */
  extern "C" void device_render(int* pixels,
                                const unsigned int width,
                                const unsigned int height,
                                const float time,
                                const ISPCCamera & camera)
  {
    /* configure rendering of selected scene */
    switch (g_scene_id)
    {
    case 0:
      g_curr_scene = &g_scene_0;
      colors = &(colors0[0]);
      break;
    case 1:
      g_curr_scene = &g_scene_1;
      colors = &(colors1[0]);
      break;
    case 2:
      g_curr_scene = &g_scene_2;
      colors = &(colors2[0]);
      break;
    }
    
    /* animate sphere */
    for (int i = 0; i < numSpheres; i++)
      animateSphere(i, time + i);
    
    /* commit changes to scene */
    //rtcCommitScene(*g_curr_scene);
    rtcCommitScene(g_scene_0);
    rtcCommitScene(g_scene_1);
    rtcCommitScene(g_scene_2);
  }
  
  /* called by the C++ code for cleanup */
  extern "C" void device_cleanup()
  {
    rtcReleaseScene(g_scene_0); g_scene_0 = nullptr;
    rtcReleaseScene(g_scene_1); g_scene_1 = nullptr;
    rtcReleaseScene(g_scene_2); g_scene_2 = nullptr;
  }
  
} // namespace embree