File: pathtracer_device.cpp

package info (click to toggle)
embree 3.13.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 27,924 kB
  • sloc: cpp: 180,815; xml: 3,877; ansic: 2,957; python: 1,466; sh: 502; makefile: 229; csh: 42
file content (1859 lines) | stat: -rw-r--r-- 71,632 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "../common/math/random_sampler.h"
#include "../common/math/sampling.h"
#include "../common/core/differential_geometry.h"
#include "../common/tutorial/tutorial_device.h"
#include "../common/tutorial/scene_device.h"
#include "../common/tutorial/optics.h"

namespace embree {

#undef TILE_SIZE_X
#undef TILE_SIZE_Y

#define TILE_SIZE_X 4
#define TILE_SIZE_Y 4

#define FIXED_SAMPLING 0

#define FIXED_EDGE_TESSELLATION_VALUE 4

#define ENABLE_FILTER_FUNCTION 1

#define MAX_EDGE_LEVEL 128.0f
#define MIN_EDGE_LEVEL   4.0f
#define LEVEL_FACTOR    64.0f

extern "C" int g_spp;
extern "C" int g_max_path_length;
extern "C" bool g_accumulate;
extern "C" int g_animation_mode;
  
bool g_subdiv_mode = false;
unsigned int keyframeID = 0;

struct BRDF
{
  float Ns;               /*< specular exponent */
  float Ni;               /*< optical density for the surface (index of refraction) */
  Vec3fa Ka;              /*< ambient reflectivity */
  Vec3fa Kd;              /*< diffuse reflectivity */
  Vec3fa Ks;              /*< specular reflectivity */
  Vec3fa Kt;              /*< transmission filter */
  float dummy[30];
};

struct Medium
{
  Vec3fa transmission; //!< Transmissivity of medium.
  float eta;             //!< Refraction index of medium.
};

inline Medium make_Medium(const Vec3fa& transmission, const float eta)
{
  Medium m;
  m.transmission = transmission;
  m.eta = eta;
  return m;
}

inline Medium make_Medium_Vacuum() {
  return make_Medium(Vec3fa((float)1.0f),1.0f);
}

inline bool eq(const Medium& a, const Medium& b) {
  return (a.eta == b.eta) && eq(a.transmission, b.transmission);
}

inline Vec3fa sample_component2(const Vec3fa& c0, const Sample3f& wi0, const Medium& medium0,
                               const Vec3fa& c1, const Sample3f& wi1, const Medium& medium1,
                               const Vec3fa& Lw, Sample3f& wi_o, Medium& medium_o, const float s)
{
  const Vec3fa m0 = Lw*c0/wi0.pdf;
  const Vec3fa m1 = Lw*c1/wi1.pdf;

  const float C0 = wi0.pdf == 0.0f ? 0.0f : max(max(m0.x,m0.y),m0.z);
  const float C1 = wi1.pdf == 0.0f ? 0.0f : max(max(m1.x,m1.y),m1.z);
  const float C  = C0 + C1;

  if (C == 0.0f) {
    wi_o = make_Sample3f(Vec3fa(0,0,0),0);
    return Vec3fa(0,0,0);
  }

  const float CP0 = C0/C;
  const float CP1 = C1/C;
  if (s < CP0) {
    wi_o = make_Sample3f(wi0.v,wi0.pdf*CP0);
    medium_o = medium0; return c0;
  }
  else {
    wi_o = make_Sample3f(wi1.v,wi1.pdf*CP1);
    medium_o = medium1; return c1;
  }
}

////////////////////////////////////////////////////////////////////////////////
//                          Minneart BRDF                                     //
////////////////////////////////////////////////////////////////////////////////

struct Minneart
{
  /*! The reflectance parameter. The vale 0 means no reflection,
   *  and 1 means full reflection. */
  Vec3fa R;

  /*! The amount of backscattering. A value of 0 means lambertian
   *  diffuse, and inf means maximum backscattering. */
  float b;
};

inline Vec3fa Minneart__eval(const Minneart* This,
                     const Vec3fa &wo, const DifferentialGeometry &dg, const Vec3fa &wi)
{
  const float cosThetaI = clamp(dot(wi,dg.Ns));
  const float backScatter = powf(clamp(dot(wo,wi)), This->b);
  return (backScatter * cosThetaI * float(one_over_pi)) * This->R;
}

inline Vec3fa Minneart__sample(const Minneart* This,
                       const Vec3fa &wo,
                       const DifferentialGeometry &dg,
                       Sample3f &wi,
                       const Vec2f &s)
{
  wi = cosineSampleHemisphere(s.x,s.y,dg.Ns);
  return Minneart__eval(This, wo, dg, wi.v);
}

inline void Minneart__Constructor(Minneart* This, const Vec3fa& R, const float b)
{
  This->R = R;
  This->b = b;
}

inline Minneart make_Minneart(const Vec3fa& R, const float f) {
  Minneart m; Minneart__Constructor(&m,R,f); return m;
}

////////////////////////////////////////////////////////////////////////////////
//                            Velvet BRDF                                     //
////////////////////////////////////////////////////////////////////////////////

struct Velvety
{
  BRDF base;

  /*! The reflectance parameter. The vale 0 means no reflection,
   *  and 1 means full reflection. */
  Vec3fa R;

  /*! The falloff of horizon scattering. 0 no falloff,
   *  and inf means maximum falloff. */
  float f;
};

inline Vec3fa Velvety__eval(const Velvety* This,
                    const Vec3fa &wo, const DifferentialGeometry &dg, const Vec3fa &wi)
{
  const float cosThetaO = clamp(dot(wo,dg.Ns));
  const float cosThetaI = clamp(dot(wi,dg.Ns));
  const float sinThetaO = sqrt(1.0f - cosThetaO * cosThetaO);
  const float horizonScatter = powf(sinThetaO, This->f);
  return (horizonScatter * cosThetaI * float(one_over_pi)) * This->R;
}

inline Vec3fa Velvety__sample(const Velvety* This,
                      const Vec3fa &wo,
                      const DifferentialGeometry &dg,
                      Sample3f &wi,
                      const Vec2f &s)
{
  wi = cosineSampleHemisphere(s.x,s.y,dg.Ns);
  return Velvety__eval(This, wo, dg, wi.v);
}

inline void Velvety__Constructor(Velvety* This, const Vec3fa& R, const float f)
{
  This->R = R;
  This->f = f;
}

inline Velvety make_Velvety(const Vec3fa& R, const float f) {
  Velvety m; Velvety__Constructor(&m,R,f); return m;
}

////////////////////////////////////////////////////////////////////////////////
//                  Dielectric Reflection BRDF                                //
////////////////////////////////////////////////////////////////////////////////

struct DielectricReflection
{
  float eta;
};

inline Vec3fa DielectricReflection__eval(const DielectricReflection* This, const Vec3fa &wo, const DifferentialGeometry &dg, const Vec3fa &wi) {
  return Vec3fa(0.f);
}

inline Vec3fa DielectricReflection__sample(const DielectricReflection* This, const Vec3fa &wo, const DifferentialGeometry &dg, Sample3f &wi, const Vec2f &s)
{
  const float cosThetaO = clamp(dot(wo,dg.Ns));
  wi = make_Sample3f(reflect(wo,dg.Ns,cosThetaO),1.0f);
  return Vec3fa(fresnelDielectric(cosThetaO,This->eta));
}

inline void DielectricReflection__Constructor(DielectricReflection* This,
                                              const float etai,
                                              const float etat)
{
  This->eta = etai*rcp(etat);
}

inline DielectricReflection make_DielectricReflection(const float etai, const float etat) {
  DielectricReflection v; DielectricReflection__Constructor(&v,etai,etat); return v;
}

////////////////////////////////////////////////////////////////////////////////
//                                Lambertian BRDF                             //
////////////////////////////////////////////////////////////////////////////////

struct Lambertian
{
  Vec3fa R;
};

inline Vec3fa Lambertian__eval(const Lambertian* This,
                              const Vec3fa &wo, const DifferentialGeometry &dg, const Vec3fa &wi)
{
  return This->R * (1.0f/(float)(float(M_PI))) * clamp(dot(wi,dg.Ns));
}

inline Vec3fa Lambertian__sample(const Lambertian* This,
                                const Vec3fa &wo,
                                const DifferentialGeometry &dg,
                                Sample3f &wi,
                                const Vec2f &s)
{
  wi = cosineSampleHemisphere(s.x,s.y,dg.Ns);
  return Lambertian__eval(This, wo, dg, wi.v);
}

inline void Lambertian__Constructor(Lambertian* This, const Vec3fa& R)
{
  This->R = R;
}

inline Lambertian make_Lambertian(const Vec3fa& R) {
  Lambertian v; Lambertian__Constructor(&v,R); return v;
}


////////////////////////////////////////////////////////////////////////////////
//              Lambertian BRDF with Dielectric Layer on top                  //
////////////////////////////////////////////////////////////////////////////////

struct DielectricLayerLambertian
{
  Vec3fa T;             //!< Transmission coefficient of dielectricum
  float etait;         //!< Relative refraction index etai/etat of both media
  float etati;         //!< relative refraction index etat/etai of both media
  Lambertian ground;   //!< the BRDF of the ground layer
};

inline Vec3fa DielectricLayerLambertian__eval(const DielectricLayerLambertian* This,
                                             const Vec3fa &wo, const DifferentialGeometry &dg, const Vec3fa &wi)
{
  const float cosThetaO = dot(wo,dg.Ns);
  const float cosThetaI = dot(wi,dg.Ns);
  if (cosThetaI <= 0.0f || cosThetaO <= 0.0f) return Vec3fa(0.f);

  float cosThetaO1;
  const Sample3f wo1 = refract(wo,dg.Ns,This->etait,cosThetaO,cosThetaO1);
  float cosThetaI1;
  const Sample3f wi1 = refract(wi,dg.Ns,This->etait,cosThetaI,cosThetaI1);
  const float Fi = 1.0f - fresnelDielectric(cosThetaI,cosThetaI1,This->etait);
  const Vec3fa Fg = Lambertian__eval(&This->ground,neg(wo1.v),dg,neg(wi1.v));
  const float Fo = 1.0f - fresnelDielectric(cosThetaO,cosThetaO1,This->etait);
  return Fo * This->T * Fg * This->T * Fi;
}

inline Vec3fa DielectricLayerLambertian__sample(const DielectricLayerLambertian* This,
                                               const Vec3fa &wo,
                                               const DifferentialGeometry &dg,
                                               Sample3f &wi,
                                               const Vec2f &s)
{
  /*! refract ray into medium */
  float cosThetaO = dot(wo,dg.Ns);
  if (cosThetaO <= 0.0f) { wi = make_Sample3f(Vec3fa(0.0f),0.0f); return Vec3fa(0.f); }
  float cosThetaO1; Sample3f wo1 = refract(wo,dg.Ns,This->etait,cosThetaO,cosThetaO1);

  /*! sample ground BRDF */
  Sample3f wi1 = make_Sample3f(Vec3fa(0.f),1.f);
  Vec3fa Fg = Lambertian__sample(&This->ground,neg(wo1.v),dg,wi1,s);

  /*! refract ray out of medium */
  float cosThetaI1 = dot(wi1.v,dg.Ns);
  if (cosThetaI1 <= 0.0f) { wi = make_Sample3f(Vec3fa(0.0f),0.0f); return Vec3fa(0.f); }

  float cosThetaI;
  Sample3f wi0 = refract(neg(wi1.v),neg(dg.Ns),This->etati,cosThetaI1,cosThetaI);
  if (wi0.pdf == 0.0f) { wi = make_Sample3f(Vec3fa(0.0f),0.0f); return Vec3fa(0.f); }

  /*! accumulate contribution of path */
  wi = make_Sample3f(wi0.v,wi1.pdf);
  float Fi = 1.0f - fresnelDielectric(cosThetaI,cosThetaI1,This->etait);
  float Fo = 1.0f - fresnelDielectric(cosThetaO,cosThetaO1,This->etait);
  return Fo * This->T * Fg * This->T * Fi;
}

inline void DielectricLayerLambertian__Constructor(DielectricLayerLambertian* This,
                                                   const Vec3fa& T,
                                                   const float etai,
                                                   const float etat,
                                                   const Lambertian& ground)
{
  This->T = T;
  This->etait = etai*rcp(etat);
  This->etati = etat*rcp(etai);
  This->ground = ground;
}

inline DielectricLayerLambertian make_DielectricLayerLambertian(const Vec3fa& T,
                                                                        const float etai,
                                                                        const float etat,
                                                                        const Lambertian& ground)
{
  DielectricLayerLambertian m;
  DielectricLayerLambertian__Constructor(&m,T,etai,etat,ground);
  return m;
}

/*! Anisotropic power cosine microfacet distribution. */
struct AnisotropicBlinn {
  Vec3fa dx;       //!< x-direction of the distribution.
  Vec3fa dy;       //!< y-direction of the distribution.
  Vec3fa dz;       //!< z-direction of the distribution.
  Vec3fa Kr,Kt;
  float nx;        //!< Glossiness in x direction with range [0,infinity[ where 0 is a diffuse surface.
  float ny;        //!< Exponent that determines the glossiness in y direction.
  float norm1;     //!< Normalization constant for calculating the pdf for sampling.
  float norm2;     //!< Normalization constant for calculating the distribution.
  float side;
};

  /*! Anisotropic power cosine distribution constructor. */
inline void AnisotropicBlinn__Constructor(AnisotropicBlinn* This, const Vec3fa& Kr, const Vec3fa& Kt,
                                          const Vec3fa& dx, float nx, const Vec3fa& dy, float ny, const Vec3fa& dz)
{
  This->Kr = Kr;
  This->Kt = Kt;
  This->dx = dx;
  This->nx = nx;
  This->dy = dy;
  This->ny = ny;
  This->dz = dz;
  This->norm1 = sqrtf((nx+1)*(ny+1)) * float(one_over_two_pi);
  This->norm2 = sqrtf((nx+2)*(ny+2)) * float(one_over_two_pi);
  This->side = reduce_max(Kr)/(reduce_max(Kr)+reduce_max(Kt));
}

/*! Evaluates the power cosine distribution. \param wh is the half
 *  vector */
inline float AnisotropicBlinn__eval(const AnisotropicBlinn* This, const Vec3fa& wh)
{
  const float cosPhiH   = dot(wh, This->dx);
  const float sinPhiH   = dot(wh, This->dy);
  const float cosThetaH = dot(wh, This->dz);
  const float R = sqr(cosPhiH)+sqr(sinPhiH);
  if (R == 0.0f) return This->norm2;
  const float n = (This->nx*sqr(cosPhiH)+This->ny*sqr(sinPhiH))*rcp(R);
  return This->norm2 * powf(abs(cosThetaH), n);
}

/*! Samples the distribution. \param s is the sample location
 *  provided by the caller. */
inline Vec3ff AnisotropicBlinn__sample(const AnisotropicBlinn* This, const float sx, const float sy)
{
  const float phi =float(two_pi)*sx;
  const float sinPhi0 = sqrtf(This->nx+1)*sinf(phi);
  const float cosPhi0 = sqrtf(This->ny+1)*cosf(phi);
  const float norm = rsqrt(sqr(sinPhi0)+sqr(cosPhi0));
  const float sinPhi = sinPhi0*norm;
  const float cosPhi = cosPhi0*norm;
  const float n = This->nx*sqr(cosPhi)+This->ny*sqr(sinPhi);
  const float cosTheta = powf(sy,rcp(n+1));
  const float sinTheta = cos2sin(cosTheta);
  const float pdf = This->norm1*powf(cosTheta,n);
  const Vec3fa h = Vec3fa(cosPhi * sinTheta, sinPhi * sinTheta, cosTheta);
  const Vec3fa wh = h.x*This->dx + h.y*This->dy + h.z*This->dz;
  return Vec3ff(wh,pdf);
}

inline Vec3fa AnisotropicBlinn__eval(const AnisotropicBlinn* This, const Vec3fa& wo, const Vec3fa& wi)
{
  const float cosThetaI = dot(wi,This->dz);

  /* reflection */
  if (cosThetaI > 0.0f) {
    const Vec3fa wh = normalize(wi + wo);
    return This->Kr * AnisotropicBlinn__eval(This,wh) * abs(cosThetaI);
  }

  /* transmission */
  else {
    const Vec3fa wh = normalize(reflect(wi,This->dz) + wo);
    return This->Kt * AnisotropicBlinn__eval(This,wh) * abs(cosThetaI);
  }
}

inline Vec3fa AnisotropicBlinn__sample(const AnisotropicBlinn* This, const Vec3fa& wo, Sample3f& wi_o, const float sx, const float sy, const float sz)
{
  //wi = Vec3fa(reflect(normalize(wo),normalize(dz)),1.0f); return Kr;
  //wi = Vec3fa(neg(wo),1.0f); return Kt;
  const Vec3ff wh = AnisotropicBlinn__sample(This,sx,sy);
  //if (dot(wo,wh) < 0.0f) return Vec3fa(0.0f,0.0f);

  /* reflection */
  if (sz < This->side) {
    wi_o = make_Sample3f(reflect(wo,Vec3fa(wh)),wh.w*This->side);
    const float cosThetaI = dot(wi_o.v,This->dz);
    return This->Kr * AnisotropicBlinn__eval(This,Vec3fa(wh)) * abs(cosThetaI);
  }

  /* transmission */
  else {
    wi_o = make_Sample3f(reflect(reflect(wo,Vec3fa(wh)),This->dz),wh.w*(1-This->side));
    const float cosThetaI = dot(wi_o.v,This->dz);
    return This->Kt * AnisotropicBlinn__eval(This,Vec3fa(wh)) * abs(cosThetaI);
  }
}

////////////////////////////////////////////////////////////////////////////////
//                          Matte Material                                    //
////////////////////////////////////////////////////////////////////////////////

void MatteMaterial__preprocess(ISPCMatteMaterial* material, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}

Vec3fa MatteMaterial__eval(ISPCMatteMaterial* This, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi)
{
  Lambertian lambertian = make_Lambertian(Vec3fa((Vec3fa)This->reflectance));
  return Lambertian__eval(&lambertian,wo,dg,wi);
}

Vec3fa MatteMaterial__sample(ISPCMatteMaterial* This, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  Lambertian lambertian = make_Lambertian(Vec3fa((Vec3fa)This->reflectance));
  return Lambertian__sample(&lambertian,wo,dg,wi_o,s);
}

////////////////////////////////////////////////////////////////////////////////
//                          Mirror Material                                    //
////////////////////////////////////////////////////////////////////////////////

void MirrorMaterial__preprocess(ISPCMirrorMaterial* material, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}

Vec3fa MirrorMaterial__eval(ISPCMirrorMaterial* This, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi) {
  return Vec3fa(0.0f);
}

Vec3fa MirrorMaterial__sample(ISPCMirrorMaterial* This, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  wi_o = make_Sample3f(reflect(wo,dg.Ns),1.0f);
  return Vec3fa(This->reflectance);
}

////////////////////////////////////////////////////////////////////////////////
//                          OBJ Material                                      //
////////////////////////////////////////////////////////////////////////////////

void OBJMaterial__preprocess(ISPCOBJMaterial* material, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)
{
    float d = material->d;
    if (material->map_d) d *= getTextureTexel1f(material->map_d,dg.u,dg.v);
    brdf.Ka = Vec3fa(material->Ka);
    //if (material->map_Ka) { brdf.Ka *= material->map_Ka->get(dg.st); }
    brdf.Kd = d * Vec3fa(material->Kd);
    if (material->map_Kd) brdf.Kd = brdf.Kd * getTextureTexel3f(material->map_Kd,dg.u,dg.v);
    brdf.Ks = d * Vec3fa(material->Ks);
    //if (material->map_Ks) brdf.Ks *= material->map_Ks->get(dg.st);
    brdf.Ns = material->Ns;
    //if (material->map_Ns) { brdf.Ns *= material->map_Ns.get(dg.st); }
    brdf.Kt = (1.0f-d)*Vec3fa(material->Kt);
    brdf.Ni = material->Ni;
}

Vec3fa OBJMaterial__eval(ISPCOBJMaterial* material, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi)
{
  Vec3fa R = Vec3fa(0.0f);
  const float Md = max(max(brdf.Kd.x,brdf.Kd.y),brdf.Kd.z);
  const float Ms = max(max(brdf.Ks.x,brdf.Ks.y),brdf.Ks.z);
  const float Mt = max(max(brdf.Kt.x,brdf.Kt.y),brdf.Kt.z);
  if (Md > 0.0f) {
    R = R + (1.0f/float(M_PI)) * clamp(dot(wi,dg.Ns)) * brdf.Kd;
  }
  if (Ms > 0.0f) {
    const Sample3f refl = make_Sample3f(reflect(wo,dg.Ns),1.0f);
    if (dot(refl.v,wi) > 0.0f)
      R = R + (brdf.Ns+2) * float(one_over_two_pi) * powf(max(1e-10f,dot(refl.v,wi)),brdf.Ns) * clamp(dot(wi,dg.Ns)) * brdf.Ks;
  }
  if (Mt > 0.0f) {
  }
  return R;
}

Vec3fa OBJMaterial__sample(ISPCOBJMaterial* material, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  Vec3fa cd = Vec3fa(0.0f);
  Sample3f wid = make_Sample3f(Vec3fa(0.0f),0.0f);
  if (max(max(brdf.Kd.x,brdf.Kd.y),brdf.Kd.z) > 0.0f) {
    wid = cosineSampleHemisphere(s.x,s.y,dg.Ns);
    cd = float(one_over_pi) * clamp(dot(wid.v,dg.Ns)) * brdf.Kd;
  }

  Vec3fa cs = Vec3fa(0.0f);
  Sample3f wis = make_Sample3f(Vec3fa(0.0f),0.0f);
  if (max(max(brdf.Ks.x,brdf.Ks.y),brdf.Ks.z) > 0.0f)
  {
    const Sample3f refl = make_Sample3f(reflect(wo,dg.Ns),1.0f);
    wis.v = powerCosineSampleHemisphere(brdf.Ns,s);
    wis.pdf = powerCosineSampleHemispherePDF(wis.v,brdf.Ns);
    wis.v = frame(refl.v) * wis.v;
    cs = (brdf.Ns+2) * float(one_over_two_pi) * powf(max(dot(refl.v,wis.v),1e-10f),brdf.Ns) * clamp(dot(wis.v,dg.Ns)) * brdf.Ks;
  }

  Vec3fa ct = Vec3fa(0.0f);
  Sample3f wit = make_Sample3f(Vec3fa(0.0f),0.0f);
  if (max(max(brdf.Kt.x,brdf.Kt.y),brdf.Kt.z) > 0.0f)
  {
    wit = make_Sample3f(neg(wo),1.0f);
    ct = brdf.Kt;
  }

  const Vec3fa md = Lw*cd/wid.pdf;
  const Vec3fa ms = Lw*cs/wis.pdf;
  const Vec3fa mt = Lw*ct/wit.pdf;

  const float Cd = wid.pdf == 0.0f ? 0.0f : max(max(md.x,md.y),md.z);
  const float Cs = wis.pdf == 0.0f ? 0.0f : max(max(ms.x,ms.y),ms.z);
  const float Ct = wit.pdf == 0.0f ? 0.0f : max(max(mt.x,mt.y),mt.z);
  const float C  = Cd + Cs + Ct;

  if (C == 0.0f) {
    wi_o = make_Sample3f(Vec3fa(0,0,0),0);
    return Vec3fa(0,0,0);
  }

  const float CPd = Cd/C;
  const float CPs = Cs/C;
  const float CPt = Ct/C;

  if (s.x < CPd) {
    wi_o = make_Sample3f(wid.v,wid.pdf*CPd);
    return cd;
  }
  else if (s.x < CPd + CPs)
  {
    wi_o = make_Sample3f(wis.v,wis.pdf*CPs);
    return cs;
  }
  else
  {
    wi_o = make_Sample3f(wit.v,wit.pdf*CPt);
    return ct;
  }
}

////////////////////////////////////////////////////////////////////////////////
//                        Metal Material                                      //
////////////////////////////////////////////////////////////////////////////////

void MetalMaterial__preprocess(ISPCMetalMaterial* material, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}

Vec3fa MetalMaterial__eval(ISPCMetalMaterial* This, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi)
{
  const FresnelConductor fresnel = make_FresnelConductor(Vec3fa(This->eta),Vec3fa(This->k));
  const PowerCosineDistribution distribution = make_PowerCosineDistribution(rcp(This->roughness));

  const float cosThetaO = dot(wo,dg.Ns);
  const float cosThetaI = dot(wi,dg.Ns);
  if (cosThetaI <= 0.0f || cosThetaO <= 0.0f) return Vec3fa(0.f);
  const Vec3fa wh = normalize(wi+wo);
  const float cosThetaH = dot(wh, dg.Ns);
  const float cosTheta = dot(wi, wh); // = dot(wo, wh);
  const Vec3fa F = eval(fresnel,cosTheta);
  const float D = eval(distribution,cosThetaH);
  const float G = min(1.0f, min(2.0f * cosThetaH * cosThetaO / cosTheta,
                                2.0f * cosThetaH * cosThetaI / cosTheta));
  return (Vec3fa(This->reflectance)*F) * D * G * rcp(4.0f*cosThetaO);
}

Vec3fa MetalMaterial__sample(ISPCMetalMaterial* This, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  const PowerCosineDistribution distribution = make_PowerCosineDistribution(rcp(This->roughness));

  if (dot(wo,dg.Ns) <= 0.0f) { wi_o = make_Sample3f(Vec3fa(0.0f),0.0f); return Vec3fa(0.f); }
  sample(distribution,wo,dg.Ns,wi_o,s);
  if (dot(wi_o.v,dg.Ns) <= 0.0f) { wi_o = make_Sample3f(Vec3fa(0.0f),0.0f); return Vec3fa(0.f); }
  return MetalMaterial__eval(This,brdf,wo,dg,wi_o.v);
}

////////////////////////////////////////////////////////////////////////////////
//                        ReflectiveMetal Material                            //
////////////////////////////////////////////////////////////////////////////////

void ReflectiveMetalMaterial__preprocess(ISPCReflectiveMetalMaterial* material, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)  {
}

Vec3fa ReflectiveMetalMaterial__eval(ISPCReflectiveMetalMaterial* This, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi) {
  return Vec3fa(0.0f);
}

Vec3fa ReflectiveMetalMaterial__sample(ISPCReflectiveMetalMaterial* This, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  wi_o = make_Sample3f(reflect(wo,dg.Ns),1.0f);
  return Vec3fa(This->reflectance) * fresnelConductor(dot(wo,dg.Ns),Vec3fa((Vec3fa)This->eta),Vec3fa((Vec3fa)This->k));
}

////////////////////////////////////////////////////////////////////////////////
//                        Velvet Material                                     //
////////////////////////////////////////////////////////////////////////////////

void VelvetMaterial__preprocess(ISPCVelvetMaterial* material, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}

Vec3fa VelvetMaterial__eval(ISPCVelvetMaterial* This, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi)
{
  Minneart minneart; Minneart__Constructor(&minneart,(Vec3fa)Vec3fa(This->reflectance),This->backScattering);
  Velvety velvety; Velvety__Constructor (&velvety,Vec3fa((Vec3fa)This->horizonScatteringColor),This->horizonScatteringFallOff);
  return Minneart__eval(&minneart,wo,dg,wi) + Velvety__eval(&velvety,wo,dg,wi);
}

Vec3fa VelvetMaterial__sample(ISPCVelvetMaterial* This, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  Minneart minneart; Minneart__Constructor(&minneart,Vec3fa((Vec3fa)This->reflectance),This->backScattering);
  Velvety velvety; Velvety__Constructor (&velvety,Vec3fa((Vec3fa)This->horizonScatteringColor),This->horizonScatteringFallOff);

  Sample3f wi0; Vec3fa c0 = Minneart__sample(&minneart,wo,dg,wi0,s);
  Sample3f wi1; Vec3fa c1 = Velvety__sample(&velvety,wo,dg,wi1,s);
  return sample_component2(c0,wi0,medium,c1,wi1,medium,Lw,wi_o,medium,s.x);
}

////////////////////////////////////////////////////////////////////////////////
//                          Dielectric Material                               //
////////////////////////////////////////////////////////////////////////////////

void DielectricMaterial__preprocess(ISPCDielectricMaterial* material, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}

Vec3fa DielectricMaterial__eval(ISPCDielectricMaterial* material, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi) {
  return Vec3fa(0.0f);
}

Vec3fa DielectricMaterial__sample(ISPCDielectricMaterial* material, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  float eta = 0.0f;
  Medium mediumOutside = make_Medium(Vec3fa((Vec3fa)material->transmissionOutside),material->etaOutside);
  Medium mediumInside  = make_Medium(Vec3fa((Vec3fa)material->transmissionInside ),material->etaInside );
  Medium mediumFront, mediumBack;
  if (eq(medium,mediumInside)) {
    eta = material->etaInside/material->etaOutside;
    mediumFront = mediumInside;
    mediumBack = mediumOutside;
  }
  else {
    eta = material->etaOutside/material->etaInside;
    mediumFront = mediumOutside;
    mediumBack = mediumInside;
  }

  float cosThetaO = clamp(dot(wo,dg.Ns));
  float cosThetaI; Sample3f wit = refract(wo,dg.Ns,eta,cosThetaO,cosThetaI);
  Sample3f wis = make_Sample3f(reflect(wo,dg.Ns),1.0f);
  float R = fresnelDielectric(cosThetaO,cosThetaI,eta);
  Vec3fa cs = Vec3fa(R);
  Vec3fa ct = Vec3fa(1.0f-R);
  return sample_component2(cs,wis,mediumFront,ct,wit,mediumBack,Lw,wi_o,medium,s.x);
}

////////////////////////////////////////////////////////////////////////////////
//                          ThinDielectric Material                               //
////////////////////////////////////////////////////////////////////////////////

void ThinDielectricMaterial__preprocess(ISPCThinDielectricMaterial* This, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}

Vec3fa ThinDielectricMaterial__eval(ISPCThinDielectricMaterial* This, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi) {
  return Vec3fa(0.0f);
}

Vec3fa ThinDielectricMaterial__sample(ISPCThinDielectricMaterial* This, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  float cosThetaO = clamp(dot(wo,dg.Ns));
  if (cosThetaO <= 0.0f) return Vec3fa(0.0f);
  float R = fresnelDielectric(cosThetaO,rcp(This->eta));
  Sample3f wit = make_Sample3f(neg(wo),1.0f);
  Sample3f wis = make_Sample3f(reflect(wo,dg.Ns),1.0f);
  Vec3fa ct = exp(Vec3fa(This->transmissionFactor)*rcp(cosThetaO))*Vec3fa(1.0f-R);
  Vec3fa cs = Vec3fa(R);
  return sample_component2(cs,wis,medium,ct,wit,medium,Lw,wi_o,medium,s.x);
}

////////////////////////////////////////////////////////////////////////////////
//                     MetallicPaint Material                                 //
////////////////////////////////////////////////////////////////////////////////

void MetallicPaintMaterial__preprocess(ISPCMetallicPaintMaterial* material, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}

Vec3fa MetallicPaintMaterial__eval(ISPCMetallicPaintMaterial* This, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi)
{
  DielectricReflection reflection; DielectricReflection__Constructor(&reflection, 1.0f, This->eta);
  DielectricLayerLambertian lambertian; DielectricLayerLambertian__Constructor(&lambertian, Vec3fa((float)1.0f), 1.0f, This->eta, make_Lambertian(Vec3fa((Vec3fa)This->shadeColor)));
  return DielectricReflection__eval(&reflection,wo,dg,wi) + DielectricLayerLambertian__eval(&lambertian,wo,dg,wi);
}

Vec3fa MetallicPaintMaterial__sample(ISPCMetallicPaintMaterial* This, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  DielectricReflection reflection; DielectricReflection__Constructor(&reflection, 1.0f, This->eta);
  DielectricLayerLambertian lambertian; DielectricLayerLambertian__Constructor(&lambertian, Vec3fa((float)1.0f), 1.0f, This->eta, make_Lambertian(Vec3fa((Vec3fa)This->shadeColor)));
  Sample3f wi0; Vec3fa c0 = DielectricReflection__sample(&reflection,wo,dg,wi0,s);
  Sample3f wi1; Vec3fa c1 = DielectricLayerLambertian__sample(&lambertian,wo,dg,wi1,s);
  return sample_component2(c0,wi0,medium,c1,wi1,medium,Lw,wi_o,medium,s.x);
}

////////////////////////////////////////////////////////////////////////////////
//                              Hair Material                                 //
////////////////////////////////////////////////////////////////////////////////

void HairMaterial__preprocess(ISPCHairMaterial* This, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)
{
  AnisotropicBlinn__Constructor((AnisotropicBlinn*)&brdf,Vec3fa(This->Kr),Vec3fa(This->Kt),dg.Tx,(float)This->nx,dg.Ty,(float)This->ny,dg.Ng);
}

Vec3fa HairMaterial__eval(ISPCHairMaterial* This, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi)
{
  return AnisotropicBlinn__eval((AnisotropicBlinn*)&brdf,wo,wi);
}

Vec3fa HairMaterial__sample(ISPCHairMaterial* This, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  return AnisotropicBlinn__sample((AnisotropicBlinn*)&brdf,wo,wi_o,s.x,s.y,s.x);
}

////////////////////////////////////////////////////////////////////////////////
//                              Material                                      //
////////////////////////////////////////////////////////////////////////////////

inline void Material__preprocess(ISPCMaterial** materials, unsigned int materialID, unsigned int numMaterials, BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Medium& medium)
{
  auto id = materialID;
  {
    if (id < numMaterials) // FIXME: workaround for ISPC bug, location reached with empty execution mask
    {
      ISPCMaterial* material = materials[id];

      switch (material->type) {
      case MATERIAL_OBJ  : OBJMaterial__preprocess  ((ISPCOBJMaterial*)  material,brdf,wo,dg,medium); break;
      case MATERIAL_METAL: MetalMaterial__preprocess((ISPCMetalMaterial*)material,brdf,wo,dg,medium); break;
      case MATERIAL_REFLECTIVE_METAL: ReflectiveMetalMaterial__preprocess((ISPCReflectiveMetalMaterial*)material,brdf,wo,dg,medium); break;
      case MATERIAL_VELVET: VelvetMaterial__preprocess((ISPCVelvetMaterial*)material,brdf,wo,dg,medium); break;
      case MATERIAL_DIELECTRIC: DielectricMaterial__preprocess((ISPCDielectricMaterial*)material,brdf,wo,dg,medium); break;
      case MATERIAL_METALLIC_PAINT: MetallicPaintMaterial__preprocess((ISPCMetallicPaintMaterial*)material,brdf,wo,dg,medium); break;
      case MATERIAL_MATTE: MatteMaterial__preprocess((ISPCMatteMaterial*)material,brdf,wo,dg,medium); break;
      case MATERIAL_MIRROR: MirrorMaterial__preprocess((ISPCMirrorMaterial*)material,brdf,wo,dg,medium); break;
      case MATERIAL_THIN_DIELECTRIC: ThinDielectricMaterial__preprocess((ISPCThinDielectricMaterial*)material,brdf,wo,dg,medium); break;
      case MATERIAL_HAIR: HairMaterial__preprocess((ISPCHairMaterial*)material,brdf,wo,dg,medium); break;
      default: break;
      }
    }
  }
}

inline Vec3fa Material__eval(ISPCMaterial** materials, unsigned int materialID, unsigned int numMaterials, const BRDF& brdf, const Vec3fa& wo, const DifferentialGeometry& dg, const Vec3fa& wi)
{
  Vec3fa c = Vec3fa(0.0f);
  auto id = materialID;
  {
    if (id < numMaterials) // FIXME: workaround for ISPC bug, location reached with empty execution mask
    {
      ISPCMaterial* material = materials[id];
      switch (material->type) {
      case MATERIAL_OBJ  : c = OBJMaterial__eval  ((ISPCOBJMaterial*)  material, brdf, wo, dg, wi); break;
      case MATERIAL_METAL: c = MetalMaterial__eval((ISPCMetalMaterial*)material, brdf, wo, dg, wi); break;
      case MATERIAL_REFLECTIVE_METAL: c = ReflectiveMetalMaterial__eval((ISPCReflectiveMetalMaterial*)material, brdf, wo, dg, wi); break;
      case MATERIAL_VELVET: c = VelvetMaterial__eval((ISPCVelvetMaterial*)material, brdf, wo, dg, wi); break;
      case MATERIAL_DIELECTRIC: c = DielectricMaterial__eval((ISPCDielectricMaterial*)material, brdf, wo, dg, wi); break;
      case MATERIAL_METALLIC_PAINT: c = MetallicPaintMaterial__eval((ISPCMetallicPaintMaterial*)material, brdf, wo, dg, wi); break;
      case MATERIAL_MATTE: c = MatteMaterial__eval((ISPCMatteMaterial*)material, brdf, wo, dg, wi); break;
      case MATERIAL_MIRROR: c = MirrorMaterial__eval((ISPCMirrorMaterial*)material, brdf, wo, dg, wi); break;
      case MATERIAL_THIN_DIELECTRIC: c = ThinDielectricMaterial__eval((ISPCThinDielectricMaterial*)material, brdf, wo, dg, wi); break;
      case MATERIAL_HAIR: c = HairMaterial__eval((ISPCHairMaterial*)material, brdf, wo, dg, wi); break;
      default: c = Vec3fa(0.0f);
      }
    }
  }
  return c;
}

inline Vec3fa Material__sample(ISPCMaterial** materials, unsigned int materialID, unsigned int numMaterials, const BRDF& brdf, const Vec3fa& Lw, const Vec3fa& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
  Vec3fa c = Vec3fa(0.0f);
  auto id = materialID;
  {
    if (id < numMaterials) // FIXME: workaround for ISPC bug, location reached with empty execution mask
    {
      ISPCMaterial* material = materials[id];
      switch (material->type) {
      case MATERIAL_OBJ  : c = OBJMaterial__sample  ((ISPCOBJMaterial*)  material, brdf, Lw, wo, dg, wi_o, medium, s); break;
      case MATERIAL_METAL: c = MetalMaterial__sample((ISPCMetalMaterial*)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
      case MATERIAL_REFLECTIVE_METAL: c = ReflectiveMetalMaterial__sample((ISPCReflectiveMetalMaterial*)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
      case MATERIAL_VELVET: c = VelvetMaterial__sample((ISPCVelvetMaterial*)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
      case MATERIAL_DIELECTRIC: c = DielectricMaterial__sample((ISPCDielectricMaterial*)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
      case MATERIAL_METALLIC_PAINT: c = MetallicPaintMaterial__sample((ISPCMetallicPaintMaterial*)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
      case MATERIAL_MATTE: c = MatteMaterial__sample((ISPCMatteMaterial*)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
      case MATERIAL_MIRROR: c = MirrorMaterial__sample((ISPCMirrorMaterial*)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
      case MATERIAL_THIN_DIELECTRIC: c = ThinDielectricMaterial__sample((ISPCThinDielectricMaterial*)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
      case MATERIAL_HAIR: c = HairMaterial__sample((ISPCHairMaterial*)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
      default: wi_o = make_Sample3f(Vec3fa(0.0f),0.0f); c = Vec3fa(0.0f); break;
      }
    }
  }
  return c;
}


////////////////////////////////////////////////////////////////////////////////
//                               Scene                                        //
////////////////////////////////////////////////////////////////////////////////

/* scene data */
extern "C" ISPCScene* g_ispc_scene;
RTCScene g_scene = nullptr;

/* occlusion filter function */
void intersectionFilterReject(const RTCFilterFunctionNArguments* args);

void intersectionFilterOBJ(const RTCFilterFunctionNArguments* args);

void occlusionFilterOpaque(const RTCFilterFunctionNArguments* args);

void occlusionFilterOBJ(const RTCFilterFunctionNArguments* args);

void occlusionFilterHair(const RTCFilterFunctionNArguments* args);

/* accumulation buffer */
Vec3ff* g_accu = nullptr;
unsigned int g_accu_width = 0;
unsigned int g_accu_height = 0;
unsigned int g_accu_count = 0;
Vec3fa g_accu_vx;
Vec3fa g_accu_vy;
Vec3fa g_accu_vz;
Vec3fa g_accu_p;
extern "C" bool g_changed;
extern "C" int g_instancing_mode;


bool g_animation = true;
bool g_use_smooth_normals = false;
#if 0
void device_key_pressed_handler(int key)
{
  if (key == 32  /* */) g_animation = !g_animation;
  if (key == 110 /*n*/) { g_use_smooth_normals = !g_use_smooth_normals; g_changed = true; }
  else device_key_pressed_default(key);
}
#endif

void assignShaders(ISPCGeometry* geometry)
{
  RTCGeometry geom = geometry->geometry;
  if (geometry->type == SUBDIV_MESH)
  {
#if ENABLE_FILTER_FUNCTION == 1
    rtcSetGeometryOccludedFilterFunction(geom,occlusionFilterOpaque);
#endif
  }
  else if (geometry->type == TRIANGLE_MESH)
  {
    ISPCTriangleMesh* mesh = (ISPCTriangleMesh* ) geometry;
#if ENABLE_FILTER_FUNCTION == 1
    rtcSetGeometryOccludedFilterFunction(geom,occlusionFilterOpaque);

    ISPCMaterial* material = g_ispc_scene->materials[mesh->geom.materialID];
    //if (material->type == MATERIAL_DIELECTRIC || material->type == MATERIAL_THIN_DIELECTRIC)
    //  rtcSetGeometryOccludedFilterFunction(geom,intersectionFilterReject);
    //else
    if (material->type == MATERIAL_OBJ)
    {
      ISPCOBJMaterial* obj = (ISPCOBJMaterial*) material;
      if (obj->d != 1.0f || obj->map_d) {
        rtcSetGeometryIntersectFilterFunction(geom,intersectionFilterOBJ);
        rtcSetGeometryOccludedFilterFunction   (geom,occlusionFilterOBJ);
      }
    }
#endif
  }
#if ENABLE_FILTER_FUNCTION == 1
  else if (geometry->type == QUAD_MESH)
  {
    ISPCQuadMesh* mesh = (ISPCQuadMesh*) geometry;
    rtcSetGeometryOccludedFilterFunction(geom,occlusionFilterOpaque);

    ISPCMaterial* material = g_ispc_scene->materials[mesh->geom.materialID];
    //if (material->type == MATERIAL_DIELECTRIC || material->type == MATERIAL_THIN_DIELECTRIC)
    //  rtcSetGeometryOccludedFilterFunction(geom,intersectionFilterReject);
    //else
    if (material->type == MATERIAL_OBJ)
    {
      ISPCOBJMaterial* obj = (ISPCOBJMaterial*) material;
      if (obj->d != 1.0f || obj->map_d) {
        rtcSetGeometryIntersectFilterFunction(geom,intersectionFilterOBJ);
        rtcSetGeometryOccludedFilterFunction   (geom,occlusionFilterOBJ);
      }
    }
  }
  else if (geometry->type == GRID_MESH)
  {
    ISPCGridMesh* mesh = (ISPCGridMesh*) geometry;
    rtcSetGeometryOccludedFilterFunction(geom,occlusionFilterOpaque);

    ISPCMaterial* material = g_ispc_scene->materials[mesh->geom.materialID];
    //if (material->type == MATERIAL_DIELECTRIC || material->type == MATERIAL_THIN_DIELECTRIC)
    //  rtcSetGeometryOccludedFilterFunction(geom,intersectionFilterReject);
    //else
    if (material->type == MATERIAL_OBJ)
    {
      ISPCOBJMaterial* obj = (ISPCOBJMaterial*) material;
      if (obj->d != 1.0f || obj->map_d) {
        rtcSetGeometryIntersectFilterFunction(geom,intersectionFilterOBJ);
        rtcSetGeometryOccludedFilterFunction   (geom,occlusionFilterOBJ);
      }
    }
  }

  else if (geometry->type == CURVES)
  {
    rtcSetGeometryOccludedFilterFunction(geom,occlusionFilterHair);
  }
#endif
}

typedef ISPCInstance* ISPCInstance_ptr;
typedef ISPCGeometry* ISPCGeometry_ptr;

RTCScene convertScene(ISPCScene* scene_in)
{
  for (unsigned int i=0; i<scene_in->numGeometries; i++)
  {
    ISPCGeometry* geometry = scene_in->geometries[i];
    if (geometry->type == SUBDIV_MESH) {
      g_subdiv_mode = true; break;
    }
  }

  assignShadersFunc = assignShaders;
  
  RTCScene scene_out = ConvertScene(g_device, g_ispc_scene, RTC_BUILD_QUALITY_MEDIUM);

  /* commit changes to scene */
  //progressStart();
  //rtcSetSceneProgressMonitorFunction(scene_out,progressMonitor,nullptr);
  rtcCommitScene (scene_out);
  //rtcSetSceneProgressMonitorFunction(scene_out,nullptr,nullptr);
  //progressEnd();

  return scene_out;
} // convertScene

inline Vec3fa face_forward(const Vec3fa& dir, const Vec3fa& _Ng) {
  const Vec3fa Ng = _Ng;
  return dot(dir,Ng) < 0.0f ? Ng : neg(Ng);
}

inline Vec3fa derivBezier(const ISPCHairSet* mesh, const unsigned int primID, const float t, const float time)
{
  Vec3fa p00, p01, p02, p03;
  const int i = mesh->hairs[primID].vertex;
  
  if (mesh->numTimeSteps == 1)
  {
    p00 = mesh->positions[0][i+0];
    p01 = mesh->positions[0][i+1];
    p02 = mesh->positions[0][i+2];
    p03 = mesh->positions[0][i+3];
  }
  else
  {
    float f = mesh->numTimeSteps*time;
    int itime = clamp((int)floor(f),0,(int)mesh->numTimeSteps-2);
    float t1 = f-itime;
    float t0 = 1.0f-t1;
    const Vec3fa a0 = mesh->positions[itime+0][i+0];
    const Vec3fa a1 = mesh->positions[itime+0][i+1];
    const Vec3fa a2 = mesh->positions[itime+0][i+2];
    const Vec3fa a3 = mesh->positions[itime+0][i+3];
    const Vec3fa b0 = mesh->positions[itime+1][i+0];
    const Vec3fa b1 = mesh->positions[itime+1][i+1];
    const Vec3fa b2 = mesh->positions[itime+1][i+2];
    const Vec3fa b3 = mesh->positions[itime+1][i+3];
    p00 = t0*a0 + t1*b0;
    p01 = t0*a1 + t1*b1;
    p02 = t0*a2 + t1*b2;
    p03 = t0*a3 + t1*b3;
  }

  const float t0 = 1.0f - t, t1 = t;
  const Vec3fa p10 = p00 * t0 + p01 * t1;
  const Vec3fa p11 = p01 * t0 + p02 * t1;
  const Vec3fa p12 = p02 * t0 + p03 * t1;
  const Vec3fa p20 = p10 * t0 + p11 * t1;
  const Vec3fa p21 = p11 * t0 + p12 * t1;
  //const Vec3fa p30 = p20 * t0 + p21 * t1;
  return Vec3fa(3.0f*(p21-p20));
}

inline Vec3fa derivHermite(const ISPCHairSet* mesh, const unsigned int primID, const float u, const float time)
{
  Vec3fa p0, p1, t0, t1;
  const int i = mesh->hairs[primID].vertex;
  
  if (mesh->numTimeSteps == 1)
  {
    p0 = mesh->positions[0][i+0];
    p1 = mesh->positions[0][i+1];
    t0 = mesh->tangents[0][i+0];
    t1 = mesh->tangents[0][i+1];
  }
  else
  {
    float f = mesh->numTimeSteps*time;
    int itime = clamp((int)floor(f),0,(int)mesh->numTimeSteps-2);
    float time1 = f-itime;
    float time0 = 1.0f-time1;
    const Vec3fa ap0 = mesh->positions[itime+0][i+0];
    const Vec3fa ap1 = mesh->positions[itime+0][i+1];
    const Vec3fa at0 = mesh->tangents[itime+0][i+0];
    const Vec3fa at1 = mesh->tangents[itime+0][i+1];
    const Vec3fa bp0 = mesh->positions[itime+1][i+0];
    const Vec3fa bp1 = mesh->positions[itime+1][i+1];
    const Vec3fa bt0 = mesh->tangents[itime+1][i+0];
    const Vec3fa bt1 = mesh->tangents[itime+1][i+1];
    p0 = time0*ap0 + time1*bp0;
    p1 = time0*ap1 + time1*bp1;
    t0 = time0*at0 + time1*bt0;
    t1 = time0*at1 + time1*bt1;
  }
  const Vec3fa p00 = p0;
  const Vec3fa p01 = p0+(1.0f/3.0f)*t0;
  const Vec3fa p02 = p1-(1.0f/3.0f)*t1;
  const Vec3fa p03 = p1;
    
  const float u0 = 1.0f - u, u1 = u;
  const Vec3fa p10 = p00 * u0 + p01 * u1;
  const Vec3fa p11 = p01 * u0 + p02 * u1;
  const Vec3fa p12 = p02 * u0 + p03 * u1;
  const Vec3fa p20 = p10 * u0 + p11 * u1;
  const Vec3fa p21 = p11 * u0 + p12 * u1;
  //const Vec3fa p30 = p20 * u0 + p21 * u1;
  return Vec3fa(3.0f*(p21-p20));
}

inline Vec3fa derivBSpline(const ISPCHairSet* mesh, const unsigned int primID, const float t, const float time)
{
  Vec3fa p00, p01, p02, p03;
  const int i = mesh->hairs[primID].vertex;
  
  if (mesh->numTimeSteps == 1)
  {
    p00 = mesh->positions[0][i+0];
    p01 = mesh->positions[0][i+1];
    p02 = mesh->positions[0][i+2];
    p03 = mesh->positions[0][i+3];
  }
  else
  {
    float f = mesh->numTimeSteps*time;
    int itime = clamp((int)floor(f),0,(int)mesh->numTimeSteps-2);
    float t1 = f-itime;
    float t0 = 1.0f-t1;
    const Vec3fa a0 = mesh->positions[itime+0][i+0];
    const Vec3fa a1 = mesh->positions[itime+0][i+1];
    const Vec3fa a2 = mesh->positions[itime+0][i+2];
    const Vec3fa a3 = mesh->positions[itime+0][i+3];
    const Vec3fa b0 = mesh->positions[itime+1][i+0];
    const Vec3fa b1 = mesh->positions[itime+1][i+1];
    const Vec3fa b2 = mesh->positions[itime+1][i+2];
    const Vec3fa b3 = mesh->positions[itime+1][i+3];
    p00 = t0*a0 + t1*b0;
    p01 = t0*a1 + t1*b1;
    p02 = t0*a2 + t1*b2;
    p03 = t0*a3 + t1*b3;
  }

  const float t0 = 1.0f - t, t1 = t;
  const float n0 = -0.5f*t1*t1;
  const float n1 = -0.5f*t0*t0 - 2.0f*(t0*t1);
  const float n2 =  0.5f*t1*t1 + 2.0f*(t1*t0);
  const float n3 =  0.5f*t0*t0;
  return Vec3fa(n0*p00 + n1*p01 + n2*p02 + n3*p03);
}

void postIntersectGeometry(const Ray& ray, DifferentialGeometry& dg, ISPCGeometry* geometry, int& materialID)
{
  if (geometry->type == TRIANGLE_MESH)
  {
    ISPCTriangleMesh* mesh = (ISPCTriangleMesh*) geometry;
    materialID = mesh->geom.materialID;
    if (mesh->texcoords)
    {
      ISPCTriangle* tri = &mesh->triangles[dg.primID];
      const Vec2f st0 = mesh->texcoords[tri->v0];
      const Vec2f st1 = mesh->texcoords[tri->v1];
      const Vec2f st2 = mesh->texcoords[tri->v2];
      const float u = ray.u, v = ray.v, w = 1.0f-ray.u-ray.v;
      const Vec2f st = w*st0 + u*st1 + v*st2;
      dg.u = st.x;
      dg.v = st.y;
    }
    if (mesh->normals)
    {
      if (mesh->numTimeSteps == 1)
      {
        ISPCTriangle* tri = &mesh->triangles[dg.primID];
        const Vec3fa n0 = Vec3fa(mesh->normals[0][tri->v0]);
        const Vec3fa n1 = Vec3fa(mesh->normals[0][tri->v1]);
        const Vec3fa n2 = Vec3fa(mesh->normals[0][tri->v2]);
        const float u = ray.u, v = ray.v, w = 1.0f-ray.u-ray.v;
        dg.Ns = w*n0 + u*n1 + v*n2;
      }
      else
      {
        ISPCTriangle* tri = &mesh->triangles[dg.primID];
        float f = mesh->numTimeSteps*ray.time();
        int itime = clamp((int)floor(f),0,(int)mesh->numTimeSteps-2);
        float t1 = f-itime;
        float t0 = 1.0f-t1;
        const Vec3fa a0 = Vec3fa(mesh->normals[itime+0][tri->v0]);
        const Vec3fa a1 = Vec3fa(mesh->normals[itime+0][tri->v1]);
        const Vec3fa a2 = Vec3fa(mesh->normals[itime+0][tri->v2]);
        const Vec3fa b0 = Vec3fa(mesh->normals[itime+1][tri->v0]);
        const Vec3fa b1 = Vec3fa(mesh->normals[itime+1][tri->v1]);
        const Vec3fa b2 = Vec3fa(mesh->normals[itime+1][tri->v2]);
        const Vec3fa n0 = t0*a0 + t1*b0;
        const Vec3fa n1 = t0*a1 + t1*b1;
        const Vec3fa n2 = t0*a2 + t1*b2;
        const float u = ray.u, v = ray.v, w = 1.0f-ray.u-ray.v;
        dg.Ns = w*n0 + u*n1 + v*n2;
      }
    }
  }
  else if (geometry->type == QUAD_MESH)
  {
    ISPCQuadMesh* mesh = (ISPCQuadMesh*) geometry;
    materialID = mesh->geom.materialID;
    if (mesh->texcoords)
    {
      ISPCQuad* quad = &mesh->quads[dg.primID];
      const Vec2f st0 = mesh->texcoords[quad->v0];
      const Vec2f st1 = mesh->texcoords[quad->v1];
      const Vec2f st2 = mesh->texcoords[quad->v2];
      const Vec2f st3 = mesh->texcoords[quad->v3];
      if (ray.u+ray.v < 1.0f) {
        const float u = ray.u, v = ray.v; const float w = 1.0f-u-v;
        const Vec2f st = w*st0 + u*st1 + v*st3;
        dg.u = st.x;
        dg.v = st.y;
      } else {
        const float u = 1.0f-ray.u, v = 1.0f-ray.v; const float w = 1.0f-u-v;
        const Vec2f st = w*st2 + u*st3 + v*st1;
        dg.u = st.x;
        dg.v = st.y;
      }
    }
    if (mesh->normals)
    {
      if (mesh->numTimeSteps == 1)
      {
        ISPCQuad* quad = &mesh->quads[dg.primID];
        const Vec3fa n0 = Vec3fa(mesh->normals[0][quad->v0]);
        const Vec3fa n1 = Vec3fa(mesh->normals[0][quad->v1]);
        const Vec3fa n2 = Vec3fa(mesh->normals[0][quad->v2]);
        const Vec3fa n3 = Vec3fa(mesh->normals[0][quad->v3]);
        if (ray.u+ray.v < 1.0f) {
          const float u = ray.u, v = ray.v; const float w = 1.0f-u-v;
          dg.Ns = w*n0 + u*n1 + v*n3;
        } else {
          const float u = 1.0f-ray.u, v = 1.0f-ray.v; const float w = 1.0f-u-v;
          dg.Ns = w*n2 + u*n3 + v*n1;
        }
      }
      else
      {
        ISPCQuad* quad = &mesh->quads[dg.primID];
        float f = mesh->numTimeSteps*ray.time();
        int itime = clamp((int)floor(f),0,(int)mesh->numTimeSteps-2);
        float t1 = f-itime;
        float t0 = 1.0f-t1;
        const Vec3fa a0 = Vec3fa(mesh->normals[itime+0][quad->v0]);
        const Vec3fa a1 = Vec3fa(mesh->normals[itime+0][quad->v1]);
        const Vec3fa a2 = Vec3fa(mesh->normals[itime+0][quad->v2]);
        const Vec3fa a3 = Vec3fa(mesh->normals[itime+0][quad->v3]);
        const Vec3fa b0 = Vec3fa(mesh->normals[itime+1][quad->v0]);
        const Vec3fa b1 = Vec3fa(mesh->normals[itime+1][quad->v1]);
        const Vec3fa b2 = Vec3fa(mesh->normals[itime+1][quad->v2]);
        const Vec3fa b3 = Vec3fa(mesh->normals[itime+1][quad->v3]);
        const Vec3fa n0 = t0*a0 + t1*b0;
        const Vec3fa n1 = t0*a1 + t1*b1;
        const Vec3fa n2 = t0*a2 + t1*b2;
        const Vec3fa n3 = t0*a3 + t1*b3;
        if (ray.u+ray.v < 1.0f) {
          const float u = ray.u, v = ray.v; const float w = 1.0f-u-v;
          dg.Ns = w*n0 + u*n1 + v*n3;
        } else {
          const float u = 1.0f-ray.u, v = 1.0f-ray.v; const float w = 1.0f-u-v;
          dg.Ns = w*n2 + u*n3 + v*n1;
        }
      }
    }
  }
  else if (geometry->type == SUBDIV_MESH)
  {
    ISPCSubdivMesh* mesh = (ISPCSubdivMesh*) geometry;
    materialID = mesh->geom.materialID;

    if (g_use_smooth_normals)
    {
      Vec3fa dPdu,dPdv;
      rtcInterpolate1(mesh->geom.geometry,dg.primID,dg.u,dg.v,RTC_BUFFER_TYPE_VERTEX,0,nullptr,&dPdu.x,&dPdv.x,3);
      dg.Ns = normalize(cross(dPdv,dPdu));
    }
    
    const Vec2f st = getTextureCoordinatesSubdivMesh(mesh,dg.primID,ray.u,ray.v);
    dg.u = st.x;
    dg.v = st.y;
  }
  else if (geometry->type == GRID_MESH)
  {
    ISPCGridMesh* mesh = (ISPCGridMesh*) geometry;
    materialID = mesh->geom.materialID;
  }
  else if (geometry->type == POINTS)
  {
    ISPCPointSet* mesh = (ISPCPointSet*) geometry;
    materialID = mesh->geom.materialID;
  }
  else if (geometry->type == CURVES)
  {
    ISPCHairSet* mesh = (ISPCHairSet*) geometry;
    materialID = mesh->geom.materialID;
    
    if (mesh->type == RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE)
    {
      dg.Tx = normalize(dg.Ng);
      dg.Ty = normalize(cross(neg(ray.dir),dg.Tx));
      dg.Ng = normalize(cross(dg.Ty,dg.Tx));
    }
    else if (mesh->type == RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE)
    {
      Vec3fa dp = derivBezier(mesh,dg.primID,ray.u,ray.time());
      if (reduce_max(abs(dp)) < 1E-6f) dp = Vec3fa(1,1,1);
      dg.Tx = normalize(Vec3fa(dp));
      dg.Ty = normalize(cross(Vec3fa(dp),dg.Ng));
      dg.Ng = dg.Ns = normalize(dg.Ng);
      dg.eps = 1024.0f*1.19209e-07f*max(max(abs(dg.P.x),abs(dg.P.y)),max(abs(dg.P.z),ray.tfar));
    }
    else if (mesh->type == RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE)
    {
      Vec3fa dp = derivBezier(mesh,dg.primID,ray.u,ray.time());
      if (reduce_max(abs(dp)) < 1E-6f) dp = Vec3fa(1,1,1);
      dg.Tx = normalize(dp);
      dg.Ty = normalize(cross(neg(ray.dir),dg.Tx));
      dg.Ng = dg.Ns = normalize(cross(dg.Ty,dg.Tx));
    }
    else if (mesh->type == RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE)
    {
      Vec3fa dp = derivBSpline(mesh,dg.primID,ray.u,ray.time());
      if (reduce_max(abs(dp)) < 1E-6f) dp = Vec3fa(1,1,1);
      dg.Tx = normalize(Vec3fa(dp));
      dg.Ty = normalize(cross(Vec3fa(dp),dg.Ng));
      dg.Ng = dg.Ns = normalize(dg.Ng);
      dg.eps = 1024.0f*1.19209e-07f*max(max(abs(dg.P.x),abs(dg.P.y)),max(abs(dg.P.z),ray.tfar));
    }
    else if (mesh->type == RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE)
    {
      Vec3fa dp = derivBSpline(mesh,dg.primID,ray.u,ray.time());
      if (reduce_max(abs(dp)) < 1E-6f) dp = Vec3fa(1,1,1);
      dg.Tx = normalize(dp);
      dg.Ty = normalize(cross(neg(ray.dir),dg.Tx));
      dg.Ng = dg.Ns = normalize(cross(dg.Ty,dg.Tx));
    }
    else if (mesh->type == RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE)
    {
      Vec3fa dp = derivHermite(mesh,dg.primID,ray.u,ray.time());
      if (reduce_max(abs(dp)) < 1E-6f) dp = Vec3fa(1,1,1);
      dg.Tx = normalize(Vec3fa(dp));
      dg.Ty = normalize(cross(Vec3fa(dp),dg.Ng));
      dg.Ng = dg.Ns = normalize(dg.Ng);
      dg.eps = 1024.0f*1.19209e-07f*max(max(abs(dg.P.x),abs(dg.P.y)),max(abs(dg.P.z),ray.tfar));
    }
    else if (mesh->type == RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE)
    {
      Vec3fa dp = derivHermite(mesh,dg.primID,ray.u,ray.time());
      if (reduce_max(abs(dp)) < 1E-6f) dp = Vec3fa(1,1,1);
      dg.Tx = normalize(dp);
      dg.Ty = normalize(cross(neg(ray.dir),dg.Tx));
      dg.Ng = dg.Ns = normalize(cross(dg.Ty,dg.Tx));
    }
  }
  else
    assert(false);

  if (max(max(abs(dg.Ns.x), abs(dg.Ns.y)), abs(dg.Ns.z)) < 1E-4f)
    dg.Ns = Vec3fa(1, 0, 0);
}

AffineSpace3fa calculate_interpolated_space (ISPCInstance* instance, float gtime)
{
  if (instance->numTimeSteps == 1)
    return AffineSpace3fa(instance->spaces[0]);

  /* calculate time segment itime and fractional time ftime */
  const int time_segments = instance->numTimeSteps-1;
  const float time = gtime*(float)(time_segments);
  const int itime = clamp((int)(floor(time)),(int)0,time_segments-1);
  const float ftime = time - (float)(itime);
  return (1.0f-ftime)*AffineSpace3fa(instance->spaces[itime+0]) + ftime*AffineSpace3fa(instance->spaces[itime+1]);
}

typedef ISPCInstance* ISPCInstancePtr;

inline int postIntersect(const Ray& ray, DifferentialGeometry& dg)
{
  dg.eps = 32.0f*1.19209e-07f*max(max(abs(dg.P.x),abs(dg.P.y)),max(abs(dg.P.z),ray.tfar));
   
  AffineSpace3fa local2world = AffineSpace3fa::scale(Vec3fa(1));
  ISPCGeometry** geometries = g_ispc_scene->geometries;
  
  for (int i=0; i<RTC_MAX_INSTANCE_LEVEL_COUNT; i++)
  {
    const unsigned int instID = dg.instIDs[i];
    if (instID == -1) break;

    ISPCInstance* instance = (ISPCInstancePtr) geometries[instID];
    local2world = local2world * calculate_interpolated_space(instance,ray.time());

    assert(instance->child->type == GROUP);
    geometries = ((ISPCGroup*)instance->child)->geometries;
  }

  int materialID = 0;
  ISPCGeometry* geom = geometries[dg.geomID];
  auto g = geom; {
    postIntersectGeometry(ray,dg,g,materialID);
  }
  dg.Ng = xfmVector(local2world,dg.Ng);
  dg.Ns = xfmVector(local2world,dg.Ns);
  
  return materialID;
}

void intersectionFilterReject(const RTCFilterFunctionNArguments* args)
{
  assert(args->N == 1);
  bool valid = *((int*) args->valid);
  if (!valid) return;
}

void intersectionFilterOBJ(const RTCFilterFunctionNArguments* args)
{
  int* valid_i = args->valid;
  struct RTCRayHitN* _ray = (struct RTCRayHitN*)args->ray;
  struct RTCHitN* hit = args->hit;
  const unsigned int N = args->N;
  
  assert(N == 1);
  bool valid = *((int*) valid_i);
  if (!valid) return;
  
  const unsigned int rayID = 0;
  Ray *ray = (Ray*)_ray;

  /* compute differential geometry */
  //const float tfar          = RTCHitN_t(hit,N,rayID);
  const float tfar          = ray->tfar;
  DifferentialGeometry dg;
  for (int i=0; i<RTC_MAX_INSTANCE_LEVEL_COUNT; i++)
    dg.instIDs[i] = RTCHitN_instID(hit,N,rayID, i);
  
  dg.geomID = RTCHitN_geomID(hit,N,rayID);
  dg.primID = RTCHitN_primID(hit,N,rayID);
  dg.u = RTCHitN_u(hit,N,rayID);
  dg.v = RTCHitN_v(hit,N,rayID);
  Vec3fa Ng = Vec3fa(RTCHitN_Ng_x(hit,N,rayID),
                        RTCHitN_Ng_y(hit,N,rayID),
                        RTCHitN_Ng_z(hit,N,rayID));
  dg.P  = ray->org+tfar*ray->dir;
  dg.Ng = Ng;
  dg.Ns = Ng;
  int materialID = postIntersect(*ray,dg);
  dg.Ng = face_forward(ray->dir,normalize(dg.Ng));
  if (length(dg.Ns) < 1E-6f) dg.Ns = dg.Ng;
  else dg.Ns = face_forward(ray->dir,normalize(dg.Ns));
  const Vec3fa wo = neg(ray->dir);

  /* calculate BRDF */
  BRDF brdf; brdf.Kt = Vec3fa(0,0,0);
  int numMaterials = g_ispc_scene->numMaterials;
  ISPCMaterial** material_array = &g_ispc_scene->materials[0];
  Medium medium = make_Medium_Vacuum();
  Material__preprocess(material_array,materialID,numMaterials,brdf,wo,dg,medium);
  if (min(min(brdf.Kt.x,brdf.Kt.y),brdf.Kt.z) < 1.0f)
    ray->tfar   = tfar;
  else
    valid_i[0] = 0;
}

void occlusionFilterOpaque(const RTCFilterFunctionNArguments* args)
{
  IntersectContext* context = (IntersectContext*) args->context;
  Vec3fa* transparency = (Vec3fa*) context->userRayExt;
  if (!transparency) return;
  
  int* valid_i = args->valid;
  
  assert(args->N == 1);
  bool valid = *((int*) valid_i);
  if (!valid) return;
   
  *transparency = Vec3fa(0.0f);
}

void occlusionFilterOBJ(const RTCFilterFunctionNArguments* args)
{
  IntersectContext* context = (IntersectContext*) args->context;
  Vec3fa* transparency = (Vec3fa*) context->userRayExt;
  if (!transparency) return;
  
  int* valid_i = args->valid;
  struct RTCRayHitN* _ray = (struct RTCRayHitN*)args->ray;
  struct RTCHitN* hit = args->hit;
  const unsigned int N = args->N;
  
  assert(N == 1);
  bool valid = *((int*) valid_i);
  if (!valid) return;
  
  const unsigned int rayID = 0;
  Ray *ray = (Ray*)_ray;

  /* compute differential geometry */
  //const float tfar          = RTCHitN_t(hit,N,rayID);
  const float tfar          = ray->tfar;

  DifferentialGeometry dg;
  for (int i=0; i<RTC_MAX_INSTANCE_LEVEL_COUNT; i++)
    dg.instIDs[i] = RTCHitN_instID(hit,N,rayID, i);
  
  dg.geomID = RTCHitN_geomID(hit,N,rayID);
  dg.primID = RTCHitN_primID(hit,N,rayID);
  dg.u = RTCHitN_u(hit,N,rayID);
  dg.v = RTCHitN_v(hit,N,rayID);
  Vec3fa Ng = Vec3fa(RTCHitN_Ng_x(hit,N,rayID),
                        RTCHitN_Ng_y(hit,N,rayID),
                        RTCHitN_Ng_z(hit,N,rayID));
  dg.P  = ray->org+tfar*ray->dir;
  dg.Ng = Ng;
  dg.Ns = Ng;

  int materialID = postIntersect(*ray,dg);
  dg.Ng = face_forward(ray->dir,normalize(dg.Ng));
  dg.Ns = face_forward(ray->dir,normalize(dg.Ns));
  const Vec3fa wo = neg(ray->dir);

  /* calculate BRDF */
  BRDF brdf; brdf.Kt = Vec3fa(0,0,0);
  int numMaterials = g_ispc_scene->numMaterials;
  ISPCMaterial** material_array = &g_ispc_scene->materials[0];
  Medium medium = make_Medium_Vacuum();
  Material__preprocess(material_array,materialID,numMaterials,brdf,wo,dg,medium);

  *transparency = *transparency * brdf.Kt;
  if (max(max(transparency->x,transparency->y),transparency->z) > 0.0f)
    valid_i[0] = 0;
}

/* occlusion filter function */
void occlusionFilterHair(const RTCFilterFunctionNArguments* args)
{
  IntersectContext* context = (IntersectContext*) args->context;
  Vec3fa* transparency = (Vec3fa*) context->userRayExt;
  if (!transparency) return;
  
  int* valid_i = args->valid;
  struct RTCHitN* hit = args->hit;
  const unsigned int N = args->N;
  
  assert(N == 1);
  bool valid = *((int*) valid_i);
  if (!valid) return;
  
  const unsigned int rayID = 0;
  
  unsigned int hit_geomID = RTCHitN_geomID(hit,N,rayID);
  Vec3fa Kt = Vec3fa(0.0f);
  auto geomID = hit_geomID;
  {
    ISPCGeometry* geometry = g_ispc_scene->geometries[geomID];
    if (geometry->type == CURVES)
    {
      int materialID = ((ISPCHairSet*)geometry)->geom.materialID;
      ISPCMaterial* material = g_ispc_scene->materials[materialID];
      switch (material->type) {
      case MATERIAL_HAIR: Kt = Vec3fa(((ISPCHairMaterial*)material)->Kt); break;
      default: break;
      }
    }
  }

  Kt = Kt * *transparency;
  *transparency = Kt;
  if (max(max(transparency->x,transparency->y),transparency->z) > 0.0f)
    valid_i[0] = 0;
}

Vec3fa renderPixelFunction(float x, float y, RandomSampler& sampler, const ISPCCamera& camera, RayStats& stats)
{
  /* radiance accumulator and weight */
  Vec3fa L = Vec3fa(0.0f);
  Vec3fa Lw = Vec3fa(1.0f);
  Medium medium = make_Medium_Vacuum();
  float time = RandomSampler_get1D(sampler);

  /* initialize ray */
  Ray ray(Vec3fa(camera.xfm.p),
                     Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)),0.0f,inf,time);

  DifferentialGeometry dg;
 
  /* iterative path tracer loop */
  for (int i=0; i<g_max_path_length; i++)
  {
    /* terminate if contribution too low */
    if (max(Lw.x,max(Lw.y,Lw.z)) < 0.01f)
      break;

    /* intersect ray with scene */
    IntersectContext context;
    InitIntersectionContext(&context);
    context.context.flags = (i == 0) ? g_iflags_coherent : g_iflags_incoherent;
    rtcIntersect1(g_scene,&context.context,RTCRayHit_(ray));
    RayStats_addRay(stats);
    const Vec3fa wo = neg(ray.dir);

    /* invoke environment lights if nothing hit */
    if (ray.geomID == RTC_INVALID_GEOMETRY_ID)
    {
      //L = L + Lw*Vec3fa(1.0f);

      /* iterate over all lights */
      for (unsigned int i=0; i<g_ispc_scene->numLights; i++)
      {
        const Light* l = g_ispc_scene->lights[i];
        Light_EvalRes le = l->eval(l,dg,ray.dir);
        L = L + Lw*le.value;
      }

      break;
    }

    Vec3fa Ns = normalize(ray.Ng);

    /* compute differential geometry */
    for (int i=0; i<RTC_MAX_INSTANCE_LEVEL_COUNT; i++)
      dg.instIDs[i] = ray.instID[i];
    
    dg.geomID = ray.geomID;
    dg.primID = ray.primID;
    dg.u = ray.u;
    dg.v = ray.v;
    dg.P  = ray.org+ray.tfar*ray.dir;
    dg.Ng = ray.Ng;
    dg.Ns = Ns;
    int materialID = postIntersect(ray,dg);
    dg.Ng = face_forward(ray.dir,normalize(dg.Ng));
    dg.Ns = face_forward(ray.dir,normalize(dg.Ns));

    /*! Compute  simple volumetric effect. */
    Vec3fa c = Vec3fa(1.0f);
    const Vec3fa transmission = medium.transmission;
    if (ne(transmission,Vec3fa(1.0f)))
      c = c * pow(transmission,ray.tfar);

    /* calculate BRDF */
    BRDF brdf;
    int numMaterials = g_ispc_scene->numMaterials;
    ISPCMaterial** material_array = &g_ispc_scene->materials[0];
    Material__preprocess(material_array,materialID,numMaterials,brdf,wo,dg,medium);

    /* sample BRDF at hit point */
    Sample3f wi1;
    c = c * Material__sample(material_array,materialID,numMaterials,brdf,Lw, wo, dg, wi1, medium, RandomSampler_get2D(sampler));

    /* iterate over lights */
    context.context.flags = g_iflags_incoherent;
    for (unsigned int i=0; i<g_ispc_scene->numLights; i++)
    {
      const Light* l = g_ispc_scene->lights[i];
      Light_SampleRes ls = l->sample(l,dg,RandomSampler_get2D(sampler));
      if (ls.pdf <= 0.0f) continue;
      Vec3fa transparency = Vec3fa(1.0f);
      Ray shadow(dg.P,ls.dir,dg.eps,ls.dist,time);
      context.userRayExt = &transparency;
      rtcOccluded1(g_scene,&context.context,RTCRay_(shadow));
      RayStats_addShadowRay(stats);
      //if (shadow.geomID != RTC_INVALID_GEOMETRY_ID) continue;
      if (max(max(transparency.x,transparency.y),transparency.z) > 0.0f)
        L = L + Lw*ls.weight*transparency*Material__eval(material_array,materialID,numMaterials,brdf,wo,dg,ls.dir);
    }

    if (wi1.pdf <= 1E-4f /* 0.0f */) break;
    Lw = Lw*c/wi1.pdf;

    /* setup secondary ray */
    float sign = dot(wi1.v,dg.Ng) < 0.0f ? -1.0f : 1.0f;
    dg.P = dg.P + sign*dg.eps*dg.Ng;
    init_Ray(ray, dg.P,normalize(wi1.v),dg.eps,inf,time);
  }
  return L;
}

/* task that renders a single screen tile */
Vec3fa renderPixelStandard(float x, float y, const ISPCCamera& camera, RayStats& stats)
{
  RandomSampler sampler;

  Vec3fa L = Vec3fa(0.0f);

  for (int i=0; i<g_spp; i++)
  {
    RandomSampler_init(sampler, (int)x, (int)y, g_accu_count*g_spp+i);

    /* calculate pixel color */
    float fx = x + RandomSampler_get1D(sampler);
    float fy = y + RandomSampler_get1D(sampler);
    L = L + renderPixelFunction(fx,fy,sampler,camera,stats);
  }
  L = L/(float)g_spp;
  return L;
}

/* renders a single screen tile */
void renderTileStandard(int taskIndex,
                        int threadIndex,
                        int* pixels,
                        const unsigned int width,
                        const unsigned int height,
                        const float time,
                        const ISPCCamera& camera,
                        const int numTilesX,
                        const int numTilesY)
{
  const unsigned int tileY = taskIndex / numTilesX;
  const unsigned int tileX = taskIndex - tileY * numTilesX;
  const unsigned int x0 = tileX * TILE_SIZE_X;
  const unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const unsigned int y0 = tileY * TILE_SIZE_Y;
  const unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    /* calculate pixel color */
    Vec3fa color = renderPixelStandard((float)x,(float)y,camera,g_stats[threadIndex]);

    /* write color to framebuffer */
    Vec3ff accu_color = g_accu[y*width+x] + Vec3ff(color.x,color.y,color.z,1.0f); g_accu[y*width+x] = accu_color;
    float f = rcp(max(0.001f,accu_color.w));
    unsigned int r = (unsigned int) (255.01f * clamp(accu_color.x*f,0.0f,1.0f));
    unsigned int g = (unsigned int) (255.01f * clamp(accu_color.y*f,0.0f,1.0f));
    unsigned int b = (unsigned int) (255.01f * clamp(accu_color.z*f,0.0f,1.0f));
    pixels[y*width+x] = (b << 16) + (g << 8) + r;
  }
}

/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera,
                         const int numTilesX,
                         const int numTilesY)
{
  renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}


/***************************************************************************************/

inline float updateEdgeLevel( ISPCSubdivMesh* mesh, const Vec3fa& cam_pos, const unsigned int e0, const unsigned int e1)
{
  const Vec3fa v0 = mesh->positions[0][mesh->position_indices[e0]];
  const Vec3fa v1 = mesh->positions[0][mesh->position_indices[e1]];
  const Vec3fa edge = v1-v0;
  const Vec3fa P = 0.5f*(v1+v0);
  const Vec3fa dist = cam_pos - P;
  return max(min(LEVEL_FACTOR*(0.5f*length(edge)/length(dist)),MAX_EDGE_LEVEL),MIN_EDGE_LEVEL);
}

void updateEdgeLevelBuffer( ISPCSubdivMesh* mesh, const Vec3fa& cam_pos, unsigned int startID, unsigned int endID )
{
  for (unsigned int f=startID; f<endID;f++)
  {
    unsigned int e = mesh->face_offsets[f];
    unsigned int N = mesh->verticesPerFace[f];
    if (N == 4) /* fast path for quads */
      for (unsigned int i=0; i<4; i++)
        mesh->subdivlevel[e+i] =  updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%4);
       else if (N == 3) /* fast path for triangles */
         for (unsigned int i=0; i<3; i++)
           mesh->subdivlevel[e+i] =  updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%3);
       else /* fast path for general polygons */
         for (unsigned int i=0; i<N; i++)
           mesh->subdivlevel[e+i] =  updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%N);
  }
}

#if defined(ISPC)
void updateEdgeLevelBufferTask (int taskIndex, int threadIndex,  ISPCSubdivMesh* mesh, const Vec3fa& cam_pos )
{
  const unsigned int size = mesh->numFaces;
  const unsigned int startID = ((taskIndex+0)*size)/taskCount;
  const unsigned int endID   = ((taskIndex+1)*size)/taskCount;
  updateEdgeLevelBuffer(mesh,cam_pos,startID,endID);
}
#endif

void updateEdgeLevels(ISPCScene* scene_in, const Vec3fa& cam_pos)
{
  for (unsigned int g=0; g<scene_in->numGeometries; g++)
  {
    ISPCGeometry* geometry = g_ispc_scene->geometries[g];
    if (geometry->type != SUBDIV_MESH) continue;
    ISPCSubdivMesh* mesh = (ISPCSubdivMesh*) geometry;
#if defined(ISPC)
    parallel_for(size_t(0),size_t( (mesh->numFaces+4095)/4096 ),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      updateEdgeLevelBufferTask((int)i,threadIndex,mesh,cam_pos);
  }); 
#else
    updateEdgeLevelBuffer(mesh,cam_pos,0,mesh->numFaces);
#endif
    rtcUpdateGeometryBuffer(geometry->geometry,RTC_BUFFER_TYPE_LEVEL,0);
    rtcCommitGeometry(geometry->geometry);
  }
}

/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
  /* initialize last seen camera */
  g_accu_vx = Vec3fa(0.0f);
  g_accu_vy = Vec3fa(0.0f);
  g_accu_vz = Vec3fa(0.0f);
  g_accu_p  = Vec3fa(0.0f);

} // device_init

extern "C" void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
{
  /* render image */
  const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
  }); 
}

/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
                           const unsigned int width,
                           const unsigned int height,
                           const float time,
                           const ISPCCamera& camera)
{
  /* create scene */
  if (g_scene == nullptr) {
    g_scene = convertScene(g_ispc_scene);
    if (g_subdiv_mode) updateEdgeLevels(g_ispc_scene,camera.xfm.p);
    rtcCommitScene (g_scene);
  }

  /* create accumulator */
  if (g_accu_width != width || g_accu_height != height) {
    alignedFree(g_accu);
    g_accu = (Vec3ff*) alignedMalloc(width*height*sizeof(Vec3ff),16);
    g_accu_width = width;
    g_accu_height = height;
    for (unsigned int i=0; i<width*height; i++)
      g_accu[i] = Vec3ff(0.0f);
  }

  /* reset accumulator */
  bool camera_changed = g_changed || !g_accumulate || g_animation_mode; g_changed = false;
  camera_changed |= ne(g_accu_vx,camera.xfm.l.vx); g_accu_vx = camera.xfm.l.vx;
  camera_changed |= ne(g_accu_vy,camera.xfm.l.vy); g_accu_vy = camera.xfm.l.vy;
  camera_changed |= ne(g_accu_vz,camera.xfm.l.vz); g_accu_vz = camera.xfm.l.vz;
  camera_changed |= ne(g_accu_p, camera.xfm.p);    g_accu_p  = camera.xfm.p;

  if (camera_changed)
  {
    g_accu_count=0;
    for (unsigned int i=0; i<width*height; i++)
      g_accu[i] = Vec3ff(0.0f);

    if (g_subdiv_mode) {
      updateEdgeLevels(g_ispc_scene,camera.xfm.p);
      rtcCommitScene (g_scene);
    }
  }
  else
    g_accu_count++;

  if (g_animation_mode)
      UpdateScene(g_ispc_scene, time);

} // device_render

/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
  rtcReleaseScene (g_scene); g_scene = nullptr;
  alignedFree(g_accu); g_accu = nullptr;
  g_accu_width = 0;
  g_accu_height = 0;
  g_accu_count = 0;
} // device_cleanup

} // namespace embree