1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/math/random_sampler.isph"
#include "../common/math/sampling.isph"
#include "../common/core/differential_geometry.isph"
#include "../common/tutorial/tutorial_device.isph"
#include "../common/tutorial/scene_device.h"
#include "../common/tutorial/optics.isph"
#undef TILE_SIZE_X
#undef TILE_SIZE_Y
#define TILE_SIZE_X 4
#define TILE_SIZE_Y 4
#define FIXED_SAMPLING 0
#define FIXED_EDGE_TESSELLATION_VALUE 4
#define ENABLE_FILTER_FUNCTION 1
#define MAX_EDGE_LEVEL 128.0f
#define MIN_EDGE_LEVEL 4.0f
#define LEVEL_FACTOR 64.0f
extern uniform int g_spp;
extern uniform int g_max_path_length;
extern uniform bool g_accumulate;
extern uniform int g_animation_mode;
uniform bool g_subdiv_mode = false;
uniform unsigned int keyframeID = 0;
struct BRDF
{
float Ns; /*< specular exponent */
float Ni; /*< optical density for the surface (index of refraction) */
Vec3f Ka; /*< ambient reflectivity */
Vec3f Kd; /*< diffuse reflectivity */
Vec3f Ks; /*< specular reflectivity */
Vec3f Kt; /*< transmission filter */
float dummy[30];
};
struct Medium
{
Vec3f transmission; //!< Transmissivity of medium.
float eta; //!< Refraction index of medium.
};
inline Medium make_Medium(const varying Vec3f& transmission, const float eta)
{
Medium m;
m.transmission = transmission;
m.eta = eta;
return m;
}
inline Medium make_Medium_Vacuum() {
return make_Medium(make_Vec3f((varying float)1.0f),1.0f);
}
inline bool eq(const Medium& a, const Medium& b) {
return (a.eta == b.eta) && eq(a.transmission, b.transmission);
}
inline Vec3f sample_component2(const Vec3f& c0, const Sample3f& wi0, const Medium& medium0,
const Vec3f& c1, const Sample3f& wi1, const Medium& medium1,
const Vec3f& Lw, Sample3f& wi_o, Medium& medium_o, const float s)
{
const Vec3f m0 = Lw*c0/wi0.pdf;
const Vec3f m1 = Lw*c1/wi1.pdf;
const float C0 = wi0.pdf == 0.0f ? 0.0f : max(max(m0.x,m0.y),m0.z);
const float C1 = wi1.pdf == 0.0f ? 0.0f : max(max(m1.x,m1.y),m1.z);
const float C = C0 + C1;
if (C == 0.0f) {
wi_o = make_Sample3f(make_Vec3f(0,0,0),0);
return make_Vec3f(0,0,0);
}
const float CP0 = C0/C;
const float CP1 = C1/C;
if (s < CP0) {
wi_o = make_Sample3f(wi0.v,wi0.pdf*CP0);
medium_o = medium0; return c0;
}
else {
wi_o = make_Sample3f(wi1.v,wi1.pdf*CP1);
medium_o = medium1; return c1;
}
}
////////////////////////////////////////////////////////////////////////////////
// Minneart BRDF //
////////////////////////////////////////////////////////////////////////////////
struct Minneart
{
/*! The reflectance parameter. The vale 0 means no reflection,
* and 1 means full reflection. */
Vec3f R;
/*! The amount of backscattering. A value of 0 means lambertian
* diffuse, and inf means maximum backscattering. */
float b;
};
inline Vec3f Minneart__eval(const varying Minneart* uniform This,
const Vec3f &wo, const DifferentialGeometry &dg, const Vec3f &wi)
{
const float cosThetaI = clamp(dot(wi,dg.Ns));
const float backScatter = powf(clamp(dot(wo,wi)), This->b);
return (backScatter * cosThetaI * one_over_pi) * This->R;
}
inline Vec3f Minneart__sample(const varying Minneart* uniform This,
const Vec3f &wo,
const DifferentialGeometry &dg,
Sample3f &wi,
const Vec2f &s)
{
wi = cosineSampleHemisphere(s.x,s.y,dg.Ns);
return Minneart__eval(This, wo, dg, wi.v);
}
inline void Minneart__Constructor(varying Minneart* uniform This, const varying Vec3f& R, const varying float b)
{
This->R = R;
This->b = b;
}
inline varying Minneart make_Minneart(const varying Vec3f& R, const varying float f) {
varying Minneart m; Minneart__Constructor(&m,R,f); return m;
}
////////////////////////////////////////////////////////////////////////////////
// Velvet BRDF //
////////////////////////////////////////////////////////////////////////////////
struct Velvety
{
uniform BRDF base;
/*! The reflectance parameter. The vale 0 means no reflection,
* and 1 means full reflection. */
Vec3f R;
/*! The falloff of horizon scattering. 0 no falloff,
* and inf means maximum falloff. */
float f;
};
inline Vec3f Velvety__eval(const varying Velvety* uniform This,
const Vec3f &wo, const DifferentialGeometry &dg, const Vec3f &wi)
{
const float cosThetaO = clamp(dot(wo,dg.Ns));
const float cosThetaI = clamp(dot(wi,dg.Ns));
const float sinThetaO = sqrt(1.0f - cosThetaO * cosThetaO);
const float horizonScatter = powf(sinThetaO, This->f);
return (horizonScatter * cosThetaI * one_over_pi) * This->R;
}
inline Vec3f Velvety__sample(const varying Velvety* uniform This,
const Vec3f &wo,
const DifferentialGeometry &dg,
Sample3f &wi,
const Vec2f &s)
{
wi = cosineSampleHemisphere(s.x,s.y,dg.Ns);
return Velvety__eval(This, wo, dg, wi.v);
}
inline void Velvety__Constructor(varying Velvety* uniform This, const varying Vec3f& R, const varying float f)
{
This->R = R;
This->f = f;
}
inline varying Velvety make_Velvety(const varying Vec3f& R, const varying float f) {
varying Velvety m; Velvety__Constructor(&m,R,f); return m;
}
////////////////////////////////////////////////////////////////////////////////
// Dielectric Reflection BRDF //
////////////////////////////////////////////////////////////////////////////////
struct DielectricReflection
{
float eta;
};
inline Vec3f DielectricReflection__eval(const varying DielectricReflection* uniform This, const Vec3f &wo, const DifferentialGeometry &dg, const Vec3f &wi) {
return make_Vec3f(0.f);
}
inline Vec3f DielectricReflection__sample(const varying DielectricReflection* uniform This, const Vec3f &wo, const DifferentialGeometry &dg, Sample3f &wi, const Vec2f &s)
{
const float cosThetaO = clamp(dot(wo,dg.Ns));
wi = make_Sample3f(reflect(wo,dg.Ns,cosThetaO),1.0f);
return make_Vec3f(fresnelDielectric(cosThetaO,This->eta));
}
inline void DielectricReflection__Constructor(varying DielectricReflection* uniform This,
const varying float etai,
const varying float etat)
{
This->eta = etai*rcp(etat);
}
inline varying DielectricReflection make_DielectricReflection(const varying float etai, const varying float etat) {
varying DielectricReflection v; DielectricReflection__Constructor(&v,etai,etat); return v;
}
////////////////////////////////////////////////////////////////////////////////
// Lambertian BRDF //
////////////////////////////////////////////////////////////////////////////////
struct Lambertian
{
Vec3f R;
};
inline Vec3f Lambertian__eval(const varying Lambertian* uniform This,
const Vec3f &wo, const DifferentialGeometry &dg, const Vec3f &wi)
{
return This->R * (1.0f/(float)(M_PI)) * clamp(dot(wi,dg.Ns));
}
inline Vec3f Lambertian__sample(const varying Lambertian* uniform This,
const Vec3f &wo,
const DifferentialGeometry &dg,
Sample3f &wi,
const Vec2f &s)
{
wi = cosineSampleHemisphere(s.x,s.y,dg.Ns);
return Lambertian__eval(This, wo, dg, wi.v);
}
inline void Lambertian__Constructor(varying Lambertian* uniform This, const varying Vec3f& R)
{
This->R = R;
}
inline varying Lambertian make_Lambertian(const varying Vec3f& R) {
varying Lambertian v; Lambertian__Constructor(&v,R); return v;
}
////////////////////////////////////////////////////////////////////////////////
// Lambertian BRDF with Dielectric Layer on top //
////////////////////////////////////////////////////////////////////////////////
struct DielectricLayerLambertian
{
Vec3f T; //!< Transmission coefficient of dielectricum
float etait; //!< Relative refraction index etai/etat of both media
float etati; //!< relative refraction index etat/etai of both media
Lambertian ground; //!< the BRDF of the ground layer
};
inline Vec3f DielectricLayerLambertian__eval(const varying DielectricLayerLambertian* uniform This,
const Vec3f &wo, const DifferentialGeometry &dg, const Vec3f &wi)
{
const float cosThetaO = dot(wo,dg.Ns);
const float cosThetaI = dot(wi,dg.Ns);
if (cosThetaI <= 0.0f || cosThetaO <= 0.0f) return make_Vec3f(0.f);
float cosThetaO1;
const Sample3f wo1 = refract(wo,dg.Ns,This->etait,cosThetaO,cosThetaO1);
float cosThetaI1;
const Sample3f wi1 = refract(wi,dg.Ns,This->etait,cosThetaI,cosThetaI1);
const float Fi = 1.0f - fresnelDielectric(cosThetaI,cosThetaI1,This->etait);
const Vec3f Fg = Lambertian__eval(&This->ground,neg(wo1.v),dg,neg(wi1.v));
const float Fo = 1.0f - fresnelDielectric(cosThetaO,cosThetaO1,This->etait);
return Fo * This->T * Fg * This->T * Fi;
}
inline Vec3f DielectricLayerLambertian__sample(const varying DielectricLayerLambertian* uniform This,
const Vec3f &wo,
const DifferentialGeometry &dg,
Sample3f &wi,
const Vec2f &s)
{
/*! refract ray into medium */
float cosThetaO = dot(wo,dg.Ns);
if (cosThetaO <= 0.0f) { wi = make_Sample3f(make_Vec3f(0.0f),0.0f); return make_Vec3f(0.f); }
float cosThetaO1; Sample3f wo1 = refract(wo,dg.Ns,This->etait,cosThetaO,cosThetaO1);
/*! sample ground BRDF */
Sample3f wi1 = make_Sample3f(make_Vec3f(0.f),1.f);
Vec3f Fg = Lambertian__sample(&This->ground,neg(wo1.v),dg,wi1,s);
/*! refract ray out of medium */
float cosThetaI1 = dot(wi1.v,dg.Ns);
if (cosThetaI1 <= 0.0f) { wi = make_Sample3f(make_Vec3f(0.0f),0.0f); return make_Vec3f(0.f); }
float cosThetaI;
Sample3f wi0 = refract(neg(wi1.v),neg(dg.Ns),This->etati,cosThetaI1,cosThetaI);
if (wi0.pdf == 0.0f) { wi = make_Sample3f(make_Vec3f(0.0f),0.0f); return make_Vec3f(0.f); }
/*! accumulate contribution of path */
wi = make_Sample3f(wi0.v,wi1.pdf);
float Fi = 1.0f - fresnelDielectric(cosThetaI,cosThetaI1,This->etait);
float Fo = 1.0f - fresnelDielectric(cosThetaO,cosThetaO1,This->etait);
return Fo * This->T * Fg * This->T * Fi;
}
inline void DielectricLayerLambertian__Constructor(varying DielectricLayerLambertian* uniform This,
const varying Vec3f& T,
const varying float etai,
const varying float etat,
const varying Lambertian& ground)
{
This->T = T;
This->etait = etai*rcp(etat);
This->etati = etat*rcp(etai);
This->ground = ground;
}
inline varying DielectricLayerLambertian make_DielectricLayerLambertian(const varying Vec3f& T,
const varying float etai,
const varying float etat,
const varying Lambertian& ground)
{
varying DielectricLayerLambertian m;
DielectricLayerLambertian__Constructor(&m,T,etai,etat,ground);
return m;
}
/*! Anisotropic power cosine microfacet distribution. */
struct AnisotropicBlinn {
Vec3f dx; //!< x-direction of the distribution.
Vec3f dy; //!< y-direction of the distribution.
Vec3f dz; //!< z-direction of the distribution.
Vec3f Kr,Kt;
float nx; //!< Glossiness in x direction with range [0,infinity[ where 0 is a diffuse surface.
float ny; //!< Exponent that determines the glossiness in y direction.
float norm1; //!< Normalization constant for calculating the pdf for sampling.
float norm2; //!< Normalization constant for calculating the distribution.
float side;
};
/*! Anisotropic power cosine distribution constructor. */
inline void AnisotropicBlinn__Constructor(varying AnisotropicBlinn* uniform This, const uniform Vec3f& Kr, const uniform Vec3f& Kt,
const Vec3f& dx, float nx, const Vec3f& dy, float ny, const Vec3f& dz)
{
This->Kr = Kr;
This->Kt = Kt;
This->dx = dx;
This->nx = nx;
This->dy = dy;
This->ny = ny;
This->dz = dz;
This->norm1 = sqrtf((nx+1)*(ny+1)) * one_over_two_pi;
This->norm2 = sqrtf((nx+2)*(ny+2)) * one_over_two_pi;
This->side = reduce_max(Kr)/(reduce_max(Kr)+reduce_max(Kt));
}
/*! Evaluates the power cosine distribution. \param wh is the half
* vector */
inline float AnisotropicBlinn__eval(const varying AnisotropicBlinn* uniform This, const Vec3f& wh)
{
const float cosPhiH = dot(wh, This->dx);
const float sinPhiH = dot(wh, This->dy);
const float cosThetaH = dot(wh, This->dz);
const float R = sqr(cosPhiH)+sqr(sinPhiH);
if (R == 0.0f) return This->norm2;
const float n = (This->nx*sqr(cosPhiH)+This->ny*sqr(sinPhiH))*rcp(R);
return This->norm2 * powf(abs(cosThetaH), n);
}
/*! Samples the distribution. \param s is the sample location
* provided by the caller. */
inline Vec3ff AnisotropicBlinn__sample(const varying AnisotropicBlinn* uniform This, const float sx, const float sy)
{
const float phi = two_pi*sx;
const float sinPhi0 = sqrtf(This->nx+1)*sinf(phi);
const float cosPhi0 = sqrtf(This->ny+1)*cosf(phi);
const float norm = rsqrt(sqr(sinPhi0)+sqr(cosPhi0));
const float sinPhi = sinPhi0*norm;
const float cosPhi = cosPhi0*norm;
const float n = This->nx*sqr(cosPhi)+This->ny*sqr(sinPhi);
const float cosTheta = powf(sy,rcp(n+1));
const float sinTheta = cos2sin(cosTheta);
const float pdf = This->norm1*powf(cosTheta,n);
const Vec3f h = make_Vec3f(cosPhi * sinTheta, sinPhi * sinTheta, cosTheta);
const Vec3f wh = h.x*This->dx + h.y*This->dy + h.z*This->dz;
return make_Vec3ff(wh,pdf);
}
inline Vec3f AnisotropicBlinn__eval(const varying AnisotropicBlinn* uniform This, const Vec3f& wo, const Vec3f& wi)
{
const float cosThetaI = dot(wi,This->dz);
/* reflection */
if (cosThetaI > 0.0f) {
const Vec3f wh = normalize(wi + wo);
return This->Kr * AnisotropicBlinn__eval(This,wh) * abs(cosThetaI);
}
/* transmission */
else {
const Vec3f wh = normalize(reflect(wi,This->dz) + wo);
return This->Kt * AnisotropicBlinn__eval(This,wh) * abs(cosThetaI);
}
}
inline Vec3f AnisotropicBlinn__sample(const varying AnisotropicBlinn* uniform This, const Vec3f& wo, Sample3f& wi_o, const float sx, const float sy, const float sz)
{
//wi = Vec3f(reflect(normalize(wo),normalize(dz)),1.0f); return Kr;
//wi = Vec3f(neg(wo),1.0f); return Kt;
const Vec3ff wh = AnisotropicBlinn__sample(This,sx,sy);
//if (dot(wo,wh) < 0.0f) return Vec3f(0.0f,0.0f);
/* reflection */
if (sz < This->side) {
wi_o = make_Sample3f(reflect(wo,make_Vec3f(wh)),wh.w*This->side);
const float cosThetaI = dot(wi_o.v,This->dz);
return This->Kr * AnisotropicBlinn__eval(This,make_Vec3f(wh)) * abs(cosThetaI);
}
/* transmission */
else {
wi_o = make_Sample3f(reflect(reflect(wo,make_Vec3f(wh)),This->dz),wh.w*(1-This->side));
const float cosThetaI = dot(wi_o.v,This->dz);
return This->Kt * AnisotropicBlinn__eval(This,make_Vec3f(wh)) * abs(cosThetaI);
}
}
////////////////////////////////////////////////////////////////////////////////
// Matte Material //
////////////////////////////////////////////////////////////////////////////////
void MatteMaterial__preprocess(uniform ISPCMatteMaterial* uniform material, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}
Vec3f MatteMaterial__eval(ISPCMatteMaterial* uniform This, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi)
{
Lambertian lambertian = make_Lambertian(make_Vec3f((varying Vec3fa)This->reflectance));
return Lambertian__eval(&lambertian,wo,dg,wi);
}
Vec3f MatteMaterial__sample(ISPCMatteMaterial* uniform This, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
Lambertian lambertian = make_Lambertian(make_Vec3f((varying Vec3fa)This->reflectance));
return Lambertian__sample(&lambertian,wo,dg,wi_o,s);
}
////////////////////////////////////////////////////////////////////////////////
// Mirror Material //
////////////////////////////////////////////////////////////////////////////////
void MirrorMaterial__preprocess(uniform ISPCMirrorMaterial* uniform material, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}
Vec3f MirrorMaterial__eval(ISPCMirrorMaterial* uniform This, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi) {
return make_Vec3f(0.0f);
}
Vec3f MirrorMaterial__sample(ISPCMirrorMaterial* uniform This, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
wi_o = make_Sample3f(reflect(wo,dg.Ns),1.0f);
return make_Vec3f(This->reflectance);
}
////////////////////////////////////////////////////////////////////////////////
// OBJ Material //
////////////////////////////////////////////////////////////////////////////////
void OBJMaterial__preprocess(uniform ISPCOBJMaterial* uniform material, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium)
{
float d = material->d;
if (material->map_d) d *= getTextureTexel1f(material->map_d,dg.u,dg.v);
brdf.Ka = make_Vec3f(material->Ka);
//if (material->map_Ka) { brdf.Ka *= material->map_Ka->get(dg.st); }
brdf.Kd = d * make_Vec3f(material->Kd);
if (material->map_Kd) brdf.Kd = brdf.Kd * getTextureTexel3f(material->map_Kd,dg.u,dg.v);
brdf.Ks = d * make_Vec3f(material->Ks);
//if (material->map_Ks) brdf.Ks *= material->map_Ks->get(dg.st);
brdf.Ns = material->Ns;
//if (material->map_Ns) { brdf.Ns *= material->map_Ns.get(dg.st); }
brdf.Kt = (1.0f-d)*make_Vec3f(material->Kt);
brdf.Ni = material->Ni;
}
Vec3f OBJMaterial__eval(ISPCOBJMaterial* uniform material, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi)
{
Vec3f R = make_Vec3f(0.0f);
const float Md = max(max(brdf.Kd.x,brdf.Kd.y),brdf.Kd.z);
const float Ms = max(max(brdf.Ks.x,brdf.Ks.y),brdf.Ks.z);
const float Mt = max(max(brdf.Kt.x,brdf.Kt.y),brdf.Kt.z);
if (Md > 0.0f) {
R = R + (1.0f/M_PI) * clamp(dot(wi,dg.Ns)) * brdf.Kd;
}
if (Ms > 0.0f) {
const Sample3f refl = make_Sample3f(reflect(wo,dg.Ns),1.0f);
if (dot(refl.v,wi) > 0.0f)
R = R + (brdf.Ns+2) * one_over_two_pi * powf(max(1e-10f,dot(refl.v,wi)),brdf.Ns) * clamp(dot(wi,dg.Ns)) * brdf.Ks;
}
if (Mt > 0.0f) {
}
return R;
}
Vec3f OBJMaterial__sample(ISPCOBJMaterial* uniform material, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
Vec3f cd = make_Vec3f(0.0f);
Sample3f wid = make_Sample3f(make_Vec3f(0.0f),0.0f);
if (max(max(brdf.Kd.x,brdf.Kd.y),brdf.Kd.z) > 0.0f) {
wid = cosineSampleHemisphere(s.x,s.y,dg.Ns);
cd = one_over_pi * clamp(dot(wid.v,dg.Ns)) * brdf.Kd;
}
Vec3f cs = make_Vec3f(0.0f);
Sample3f wis = make_Sample3f(make_Vec3f(0.0f),0.0f);
if (max(max(brdf.Ks.x,brdf.Ks.y),brdf.Ks.z) > 0.0f)
{
const Sample3f refl = make_Sample3f(reflect(wo,dg.Ns),1.0f);
wis.v = powerCosineSampleHemisphere(brdf.Ns,s);
wis.pdf = powerCosineSampleHemispherePDF(wis.v,brdf.Ns);
wis.v = frame(refl.v) * wis.v;
cs = (brdf.Ns+2) * one_over_two_pi * powf(max(dot(refl.v,wis.v),1e-10f),brdf.Ns) * clamp(dot(wis.v,dg.Ns)) * brdf.Ks;
}
Vec3f ct = make_Vec3f(0.0f);
Sample3f wit = make_Sample3f(make_Vec3f(0.0f),0.0f);
if (max(max(brdf.Kt.x,brdf.Kt.y),brdf.Kt.z) > 0.0f)
{
wit = make_Sample3f(neg(wo),1.0f);
ct = brdf.Kt;
}
const Vec3f md = Lw*cd/wid.pdf;
const Vec3f ms = Lw*cs/wis.pdf;
const Vec3f mt = Lw*ct/wit.pdf;
const float Cd = wid.pdf == 0.0f ? 0.0f : max(max(md.x,md.y),md.z);
const float Cs = wis.pdf == 0.0f ? 0.0f : max(max(ms.x,ms.y),ms.z);
const float Ct = wit.pdf == 0.0f ? 0.0f : max(max(mt.x,mt.y),mt.z);
const float C = Cd + Cs + Ct;
if (C == 0.0f) {
wi_o = make_Sample3f(make_Vec3f(0,0,0),0);
return make_Vec3f(0,0,0);
}
const float CPd = Cd/C;
const float CPs = Cs/C;
const float CPt = Ct/C;
if (s.x < CPd) {
wi_o = make_Sample3f(wid.v,wid.pdf*CPd);
return cd;
}
else if (s.x < CPd + CPs)
{
wi_o = make_Sample3f(wis.v,wis.pdf*CPs);
return cs;
}
else
{
wi_o = make_Sample3f(wit.v,wit.pdf*CPt);
return ct;
}
}
////////////////////////////////////////////////////////////////////////////////
// Metal Material //
////////////////////////////////////////////////////////////////////////////////
void MetalMaterial__preprocess(uniform ISPCMetalMaterial* uniform material, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}
Vec3f MetalMaterial__eval(ISPCMetalMaterial* uniform This, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi)
{
const FresnelConductor fresnel = make_FresnelConductor(make_Vec3f(This->eta),make_Vec3f(This->k));
const PowerCosineDistribution distribution = make_PowerCosineDistribution(rcp(This->roughness));
const float cosThetaO = dot(wo,dg.Ns);
const float cosThetaI = dot(wi,dg.Ns);
if (cosThetaI <= 0.0f || cosThetaO <= 0.0f) return make_Vec3f(0.f);
const Vec3f wh = normalize(wi+wo);
const float cosThetaH = dot(wh, dg.Ns);
const float cosTheta = dot(wi, wh); // = dot(wo, wh);
const Vec3f F = eval(fresnel,cosTheta);
const float D = eval(distribution,cosThetaH);
const float G = min(1.0f, min(2.0f * cosThetaH * cosThetaO / cosTheta,
2.0f * cosThetaH * cosThetaI / cosTheta));
return (make_Vec3f(This->reflectance)*F) * D * G * rcp(4.0f*cosThetaO);
}
Vec3f MetalMaterial__sample(ISPCMetalMaterial* uniform This, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
const PowerCosineDistribution distribution = make_PowerCosineDistribution(rcp(This->roughness));
if (dot(wo,dg.Ns) <= 0.0f) { wi_o = make_Sample3f(make_Vec3f(0.0f),0.0f); return make_Vec3f(0.f); }
sample(distribution,wo,dg.Ns,wi_o,s);
if (dot(wi_o.v,dg.Ns) <= 0.0f) { wi_o = make_Sample3f(make_Vec3f(0.0f),0.0f); return make_Vec3f(0.f); }
return MetalMaterial__eval(This,brdf,wo,dg,wi_o.v);
}
////////////////////////////////////////////////////////////////////////////////
// ReflectiveMetal Material //
////////////////////////////////////////////////////////////////////////////////
void ReflectiveMetalMaterial__preprocess(uniform ISPCReflectiveMetalMaterial* uniform material, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium) {
}
Vec3f ReflectiveMetalMaterial__eval(ISPCReflectiveMetalMaterial* uniform This, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi) {
return make_Vec3f(0.0f);
}
Vec3f ReflectiveMetalMaterial__sample(ISPCReflectiveMetalMaterial* uniform This, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
wi_o = make_Sample3f(reflect(wo,dg.Ns),1.0f);
return make_Vec3f(This->reflectance) * fresnelConductor(dot(wo,dg.Ns),make_Vec3f((varying Vec3fa)This->eta),make_Vec3f((varying Vec3fa)This->k));
}
////////////////////////////////////////////////////////////////////////////////
// Velvet Material //
////////////////////////////////////////////////////////////////////////////////
void VelvetMaterial__preprocess(uniform ISPCVelvetMaterial* uniform material, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}
Vec3f VelvetMaterial__eval(ISPCVelvetMaterial* uniform This, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi)
{
Minneart minneart; Minneart__Constructor(&minneart,(varying Vec3f)make_Vec3f(This->reflectance),This->backScattering);
Velvety velvety; Velvety__Constructor (&velvety,make_Vec3f((varying Vec3fa)This->horizonScatteringColor),This->horizonScatteringFallOff);
return Minneart__eval(&minneart,wo,dg,wi) + Velvety__eval(&velvety,wo,dg,wi);
}
Vec3f VelvetMaterial__sample(ISPCVelvetMaterial* uniform This, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
Minneart minneart; Minneart__Constructor(&minneart,make_Vec3f((varying Vec3fa)This->reflectance),This->backScattering);
Velvety velvety; Velvety__Constructor (&velvety,make_Vec3f((varying Vec3fa)This->horizonScatteringColor),This->horizonScatteringFallOff);
Sample3f wi0; Vec3f c0 = Minneart__sample(&minneart,wo,dg,wi0,s);
Sample3f wi1; Vec3f c1 = Velvety__sample(&velvety,wo,dg,wi1,s);
return sample_component2(c0,wi0,medium,c1,wi1,medium,Lw,wi_o,medium,s.x);
}
////////////////////////////////////////////////////////////////////////////////
// Dielectric Material //
////////////////////////////////////////////////////////////////////////////////
void DielectricMaterial__preprocess(uniform ISPCDielectricMaterial* uniform material, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}
Vec3f DielectricMaterial__eval(ISPCDielectricMaterial* uniform material, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi) {
return make_Vec3f(0.0f);
}
Vec3f DielectricMaterial__sample(ISPCDielectricMaterial* uniform material, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
float eta = 0.0f;
Medium mediumOutside = make_Medium(make_Vec3f((varying Vec3fa)material->transmissionOutside),material->etaOutside);
Medium mediumInside = make_Medium(make_Vec3f((varying Vec3fa)material->transmissionInside ),material->etaInside );
Medium mediumFront, mediumBack;
if (eq(medium,mediumInside)) {
eta = material->etaInside/material->etaOutside;
mediumFront = mediumInside;
mediumBack = mediumOutside;
}
else {
eta = material->etaOutside/material->etaInside;
mediumFront = mediumOutside;
mediumBack = mediumInside;
}
float cosThetaO = clamp(dot(wo,dg.Ns));
float cosThetaI; Sample3f wit = refract(wo,dg.Ns,eta,cosThetaO,cosThetaI);
Sample3f wis = make_Sample3f(reflect(wo,dg.Ns),1.0f);
float R = fresnelDielectric(cosThetaO,cosThetaI,eta);
Vec3f cs = make_Vec3f(R);
Vec3f ct = make_Vec3f(1.0f-R);
return sample_component2(cs,wis,mediumFront,ct,wit,mediumBack,Lw,wi_o,medium,s.x);
}
////////////////////////////////////////////////////////////////////////////////
// ThinDielectric Material //
////////////////////////////////////////////////////////////////////////////////
void ThinDielectricMaterial__preprocess(uniform ISPCThinDielectricMaterial* uniform This, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}
Vec3f ThinDielectricMaterial__eval(ISPCThinDielectricMaterial* uniform This, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi) {
return make_Vec3f(0.0f);
}
Vec3f ThinDielectricMaterial__sample(ISPCThinDielectricMaterial* uniform This, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
float cosThetaO = clamp(dot(wo,dg.Ns));
if (cosThetaO <= 0.0f) return make_Vec3f(0.0f);
float R = fresnelDielectric(cosThetaO,rcp(This->eta));
Sample3f wit = make_Sample3f(neg(wo),1.0f);
Sample3f wis = make_Sample3f(reflect(wo,dg.Ns),1.0f);
Vec3f ct = exp(make_Vec3f(This->transmissionFactor)*rcp(cosThetaO))*make_Vec3f(1.0f-R);
Vec3f cs = make_Vec3f(R);
return sample_component2(cs,wis,medium,ct,wit,medium,Lw,wi_o,medium,s.x);
}
////////////////////////////////////////////////////////////////////////////////
// MetallicPaint Material //
////////////////////////////////////////////////////////////////////////////////
void MetallicPaintMaterial__preprocess(uniform ISPCMetallicPaintMaterial* uniform material, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium)
{
}
Vec3f MetallicPaintMaterial__eval(ISPCMetallicPaintMaterial* uniform This, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi)
{
DielectricReflection reflection; DielectricReflection__Constructor(&reflection, 1.0f, This->eta);
DielectricLayerLambertian lambertian; DielectricLayerLambertian__Constructor(&lambertian, make_Vec3f((varying float)1.0f), 1.0f, This->eta, make_Lambertian(make_Vec3f((varying Vec3fa)This->shadeColor)));
return DielectricReflection__eval(&reflection,wo,dg,wi) + DielectricLayerLambertian__eval(&lambertian,wo,dg,wi);
}
Vec3f MetallicPaintMaterial__sample(ISPCMetallicPaintMaterial* uniform This, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
DielectricReflection reflection; DielectricReflection__Constructor(&reflection, 1.0f, This->eta);
DielectricLayerLambertian lambertian; DielectricLayerLambertian__Constructor(&lambertian, make_Vec3f((varying float)1.0f), 1.0f, This->eta, make_Lambertian(make_Vec3f((varying Vec3fa)This->shadeColor)));
Sample3f wi0; Vec3f c0 = DielectricReflection__sample(&reflection,wo,dg,wi0,s);
Sample3f wi1; Vec3f c1 = DielectricLayerLambertian__sample(&lambertian,wo,dg,wi1,s);
return sample_component2(c0,wi0,medium,c1,wi1,medium,Lw,wi_o,medium,s.x);
}
////////////////////////////////////////////////////////////////////////////////
// Hair Material //
////////////////////////////////////////////////////////////////////////////////
void HairMaterial__preprocess(uniform ISPCHairMaterial* uniform This, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium)
{
AnisotropicBlinn__Constructor((varying AnisotropicBlinn* uniform)&brdf,make_Vec3f(This->Kr),make_Vec3f(This->Kt),dg.Tx,(varying float)This->nx,dg.Ty,(varying float)This->ny,dg.Ng);
}
Vec3f HairMaterial__eval(ISPCHairMaterial* uniform This, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi)
{
return AnisotropicBlinn__eval((varying AnisotropicBlinn* uniform)&brdf,wo,wi);
}
Vec3f HairMaterial__sample(ISPCHairMaterial* uniform This, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
return AnisotropicBlinn__sample((varying AnisotropicBlinn* uniform)&brdf,wo,wi_o,s.x,s.y,s.x);
}
////////////////////////////////////////////////////////////////////////////////
// Material //
////////////////////////////////////////////////////////////////////////////////
inline void Material__preprocess(ISPCMaterial** uniform materials, unsigned int materialID, uniform unsigned int numMaterials, BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Medium& medium)
{
foreach_unique (id in materialID)
{
if (id < numMaterials) // FIXME: workaround for ISPC bug, location reached with empty execution mask
{
ISPCMaterial* uniform material = materials[id];
switch (material->type) {
case MATERIAL_OBJ : OBJMaterial__preprocess ((uniform ISPCOBJMaterial* uniform) material,brdf,wo,dg,medium); break;
case MATERIAL_METAL: MetalMaterial__preprocess((uniform ISPCMetalMaterial* uniform)material,brdf,wo,dg,medium); break;
case MATERIAL_REFLECTIVE_METAL: ReflectiveMetalMaterial__preprocess((uniform ISPCReflectiveMetalMaterial* uniform)material,brdf,wo,dg,medium); break;
case MATERIAL_VELVET: VelvetMaterial__preprocess((uniform ISPCVelvetMaterial* uniform)material,brdf,wo,dg,medium); break;
case MATERIAL_DIELECTRIC: DielectricMaterial__preprocess((uniform ISPCDielectricMaterial* uniform)material,brdf,wo,dg,medium); break;
case MATERIAL_METALLIC_PAINT: MetallicPaintMaterial__preprocess((uniform ISPCMetallicPaintMaterial* uniform)material,brdf,wo,dg,medium); break;
case MATERIAL_MATTE: MatteMaterial__preprocess((uniform ISPCMatteMaterial* uniform)material,brdf,wo,dg,medium); break;
case MATERIAL_MIRROR: MirrorMaterial__preprocess((uniform ISPCMirrorMaterial* uniform)material,brdf,wo,dg,medium); break;
case MATERIAL_THIN_DIELECTRIC: ThinDielectricMaterial__preprocess((uniform ISPCThinDielectricMaterial* uniform)material,brdf,wo,dg,medium); break;
case MATERIAL_HAIR: HairMaterial__preprocess((uniform ISPCHairMaterial* uniform)material,brdf,wo,dg,medium); break;
default: break;
}
}
}
}
inline Vec3f Material__eval(ISPCMaterial** uniform materials, unsigned int materialID, uniform unsigned int numMaterials, const BRDF& brdf, const Vec3f& wo, const DifferentialGeometry& dg, const Vec3f& wi)
{
Vec3f c = make_Vec3f(0.0f);
foreach_unique (id in materialID)
{
if (id < numMaterials) // FIXME: workaround for ISPC bug, location reached with empty execution mask
{
ISPCMaterial* uniform material = materials[id];
switch (material->type) {
case MATERIAL_OBJ : c = OBJMaterial__eval ((uniform ISPCOBJMaterial* uniform) material, brdf, wo, dg, wi); break;
case MATERIAL_METAL: c = MetalMaterial__eval((uniform ISPCMetalMaterial* uniform)material, brdf, wo, dg, wi); break;
case MATERIAL_REFLECTIVE_METAL: c = ReflectiveMetalMaterial__eval((uniform ISPCReflectiveMetalMaterial* uniform)material, brdf, wo, dg, wi); break;
case MATERIAL_VELVET: c = VelvetMaterial__eval((uniform ISPCVelvetMaterial* uniform)material, brdf, wo, dg, wi); break;
case MATERIAL_DIELECTRIC: c = DielectricMaterial__eval((uniform ISPCDielectricMaterial* uniform)material, brdf, wo, dg, wi); break;
case MATERIAL_METALLIC_PAINT: c = MetallicPaintMaterial__eval((uniform ISPCMetallicPaintMaterial* uniform)material, brdf, wo, dg, wi); break;
case MATERIAL_MATTE: c = MatteMaterial__eval((uniform ISPCMatteMaterial* uniform)material, brdf, wo, dg, wi); break;
case MATERIAL_MIRROR: c = MirrorMaterial__eval((uniform ISPCMirrorMaterial* uniform)material, brdf, wo, dg, wi); break;
case MATERIAL_THIN_DIELECTRIC: c = ThinDielectricMaterial__eval((uniform ISPCThinDielectricMaterial* uniform)material, brdf, wo, dg, wi); break;
case MATERIAL_HAIR: c = HairMaterial__eval((uniform ISPCHairMaterial* uniform)material, brdf, wo, dg, wi); break;
default: c = make_Vec3f(0.0f);
}
}
}
return c;
}
inline Vec3f Material__sample(ISPCMaterial** uniform uniform materials, unsigned int materialID, uniform unsigned int numMaterials, const BRDF& brdf, const Vec3f& Lw, const Vec3f& wo, const DifferentialGeometry& dg, Sample3f& wi_o, Medium& medium, const Vec2f& s)
{
Vec3f c = make_Vec3f(0.0f);
foreach_unique (id in materialID)
{
if (id < numMaterials) // FIXME: workaround for ISPC bug, location reached with empty execution mask
{
ISPCMaterial* uniform material = materials[id];
switch (material->type) {
case MATERIAL_OBJ : c = OBJMaterial__sample ((uniform ISPCOBJMaterial* uniform) material, brdf, Lw, wo, dg, wi_o, medium, s); break;
case MATERIAL_METAL: c = MetalMaterial__sample((uniform ISPCMetalMaterial* uniform)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
case MATERIAL_REFLECTIVE_METAL: c = ReflectiveMetalMaterial__sample((uniform ISPCReflectiveMetalMaterial* uniform)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
case MATERIAL_VELVET: c = VelvetMaterial__sample((uniform ISPCVelvetMaterial* uniform)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
case MATERIAL_DIELECTRIC: c = DielectricMaterial__sample((uniform ISPCDielectricMaterial* uniform)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
case MATERIAL_METALLIC_PAINT: c = MetallicPaintMaterial__sample((uniform ISPCMetallicPaintMaterial* uniform)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
case MATERIAL_MATTE: c = MatteMaterial__sample((uniform ISPCMatteMaterial* uniform)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
case MATERIAL_MIRROR: c = MirrorMaterial__sample((uniform ISPCMirrorMaterial* uniform)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
case MATERIAL_THIN_DIELECTRIC: c = ThinDielectricMaterial__sample((uniform ISPCThinDielectricMaterial* uniform)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
case MATERIAL_HAIR: c = HairMaterial__sample((uniform ISPCHairMaterial* uniform)material, brdf, Lw, wo, dg, wi_o, medium, s); break;
default: wi_o = make_Sample3f(make_Vec3f(0.0f),0.0f); c = make_Vec3f(0.0f); break;
}
}
}
return c;
}
////////////////////////////////////////////////////////////////////////////////
// Scene //
////////////////////////////////////////////////////////////////////////////////
/* scene data */
extern uniform ISPCScene* uniform g_ispc_scene;
RTCScene g_scene = NULL;
/* occlusion filter function */
unmasked void intersectionFilterReject(const RTCFilterFunctionNArguments* uniform args);
unmasked void intersectionFilterOBJ(const RTCFilterFunctionNArguments* uniform args);
unmasked void occlusionFilterOpaque(const RTCFilterFunctionNArguments* uniform args);
unmasked void occlusionFilterOBJ(const RTCFilterFunctionNArguments* uniform args);
unmasked void occlusionFilterHair(const RTCFilterFunctionNArguments* uniform args);
/* accumulation buffer */
uniform Vec3ff* uniform g_accu = NULL;
uniform unsigned int g_accu_width = 0;
uniform unsigned int g_accu_height = 0;
uniform unsigned int g_accu_count = 0;
uniform Vec3fa g_accu_vx;
uniform Vec3fa g_accu_vy;
uniform Vec3fa g_accu_vz;
uniform Vec3fa g_accu_p;
extern uniform bool g_changed;
extern uniform int g_instancing_mode;
uniform bool g_animation = true;
uniform bool g_use_smooth_normals = false;
#if 0
void device_key_pressed_handler(uniform int key)
{
if (key == 32 /* */) g_animation = !g_animation;
if (key == 110 /*n*/) { g_use_smooth_normals = !g_use_smooth_normals; g_changed = true; }
else device_key_pressed_default(key);
}
#endif
unmasked void assignShaders(uniform ISPCGeometry* uniform uniform geometry)
{
RTCGeometry geom = geometry->geometry;
if (geometry->type == SUBDIV_MESH)
{
#if ENABLE_FILTER_FUNCTION == 1
rtcSetGeometryOccludedFilterFunction(geom,occlusionFilterOpaque);
#endif
}
else if (geometry->type == TRIANGLE_MESH)
{
ISPCTriangleMesh* uniform mesh = (ISPCTriangleMesh* uniform ) geometry;
#if ENABLE_FILTER_FUNCTION == 1
rtcSetGeometryOccludedFilterFunction(geom,occlusionFilterOpaque);
ISPCMaterial* uniform material = g_ispc_scene->materials[mesh->geom.materialID];
//if (material->type == MATERIAL_DIELECTRIC || material->type == MATERIAL_THIN_DIELECTRIC)
// rtcSetGeometryOccludedFilterFunction(geom,intersectionFilterReject);
//else
if (material->type == MATERIAL_OBJ)
{
ISPCOBJMaterial* uniform obj = (ISPCOBJMaterial* uniform) material;
if (obj->d != 1.0f || obj->map_d) {
rtcSetGeometryIntersectFilterFunction(geom,intersectionFilterOBJ);
rtcSetGeometryOccludedFilterFunction (geom,occlusionFilterOBJ);
}
}
#endif
}
#if ENABLE_FILTER_FUNCTION == 1
else if (geometry->type == QUAD_MESH)
{
ISPCQuadMesh* uniform mesh = (ISPCQuadMesh* uniform) geometry;
rtcSetGeometryOccludedFilterFunction(geom,occlusionFilterOpaque);
ISPCMaterial* uniform material = g_ispc_scene->materials[mesh->geom.materialID];
//if (material->type == MATERIAL_DIELECTRIC || material->type == MATERIAL_THIN_DIELECTRIC)
// rtcSetGeometryOccludedFilterFunction(geom,intersectionFilterReject);
//else
if (material->type == MATERIAL_OBJ)
{
ISPCOBJMaterial* uniform obj = (ISPCOBJMaterial* uniform) material;
if (obj->d != 1.0f || obj->map_d) {
rtcSetGeometryIntersectFilterFunction(geom,intersectionFilterOBJ);
rtcSetGeometryOccludedFilterFunction (geom,occlusionFilterOBJ);
}
}
}
else if (geometry->type == GRID_MESH)
{
ISPCGridMesh* uniform mesh = (ISPCGridMesh* uniform) geometry;
rtcSetGeometryOccludedFilterFunction(geom,occlusionFilterOpaque);
ISPCMaterial* uniform material = g_ispc_scene->materials[mesh->geom.materialID];
//if (material->type == MATERIAL_DIELECTRIC || material->type == MATERIAL_THIN_DIELECTRIC)
// rtcSetGeometryOccludedFilterFunction(geom,intersectionFilterReject);
//else
if (material->type == MATERIAL_OBJ)
{
ISPCOBJMaterial* uniform obj = (ISPCOBJMaterial* uniform) material;
if (obj->d != 1.0f || obj->map_d) {
rtcSetGeometryIntersectFilterFunction(geom,intersectionFilterOBJ);
rtcSetGeometryOccludedFilterFunction (geom,occlusionFilterOBJ);
}
}
}
else if (geometry->type == CURVES)
{
rtcSetGeometryOccludedFilterFunction(geom,occlusionFilterHair);
}
#endif
}
typedef uniform ISPCInstance* uniform ISPCInstance_ptr;
typedef uniform ISPCGeometry* uniform ISPCGeometry_ptr;
RTCScene convertScene(uniform ISPCScene* uniform scene_in)
{
for (uniform unsigned int i=0; i<scene_in->numGeometries; i++)
{
uniform ISPCGeometry* uniform geometry = scene_in->geometries[i];
if (geometry->type == SUBDIV_MESH) {
g_subdiv_mode = true; break;
}
}
assignShadersFunc = assignShaders;
RTCScene scene_out = ConvertScene(g_device, g_ispc_scene, RTC_BUILD_QUALITY_MEDIUM);
/* commit changes to scene */
//progressStart();
//rtcSetSceneProgressMonitorFunction(scene_out,progressMonitor,NULL);
rtcCommitScene (scene_out);
//rtcSetSceneProgressMonitorFunction(scene_out,NULL,NULL);
//progressEnd();
return scene_out;
} // convertScene
inline Vec3f face_forward(const Vec3f& dir, const Vec3f& _Ng) {
const Vec3f Ng = _Ng;
return dot(dir,Ng) < 0.0f ? Ng : neg(Ng);
}
inline Vec3f derivBezier(const ISPCHairSet* uniform mesh, const unsigned int primID, const float t, const float time)
{
Vec3fa p00, p01, p02, p03;
const int i = mesh->hairs[primID].vertex;
if (mesh->numTimeSteps == 1)
{
p00 = mesh->positions[0][i+0];
p01 = mesh->positions[0][i+1];
p02 = mesh->positions[0][i+2];
p03 = mesh->positions[0][i+3];
}
else
{
float f = mesh->numTimeSteps*time;
int itime = clamp((int)floor(f),0,(int)mesh->numTimeSteps-2);
float t1 = f-itime;
float t0 = 1.0f-t1;
const Vec3fa a0 = mesh->positions[itime+0][i+0];
const Vec3fa a1 = mesh->positions[itime+0][i+1];
const Vec3fa a2 = mesh->positions[itime+0][i+2];
const Vec3fa a3 = mesh->positions[itime+0][i+3];
const Vec3fa b0 = mesh->positions[itime+1][i+0];
const Vec3fa b1 = mesh->positions[itime+1][i+1];
const Vec3fa b2 = mesh->positions[itime+1][i+2];
const Vec3fa b3 = mesh->positions[itime+1][i+3];
p00 = t0*a0 + t1*b0;
p01 = t0*a1 + t1*b1;
p02 = t0*a2 + t1*b2;
p03 = t0*a3 + t1*b3;
}
const float t0 = 1.0f - t, t1 = t;
const Vec3fa p10 = p00 * t0 + p01 * t1;
const Vec3fa p11 = p01 * t0 + p02 * t1;
const Vec3fa p12 = p02 * t0 + p03 * t1;
const Vec3fa p20 = p10 * t0 + p11 * t1;
const Vec3fa p21 = p11 * t0 + p12 * t1;
//const Vec3fa p30 = p20 * t0 + p21 * t1;
return make_Vec3f(3.0f*(p21-p20));
}
inline Vec3f derivHermite(const ISPCHairSet* uniform mesh, const unsigned int primID, const float u, const float time)
{
Vec3fa p0, p1, t0, t1;
const int i = mesh->hairs[primID].vertex;
if (mesh->numTimeSteps == 1)
{
p0 = mesh->positions[0][i+0];
p1 = mesh->positions[0][i+1];
t0 = mesh->tangents[0][i+0];
t1 = mesh->tangents[0][i+1];
}
else
{
float f = mesh->numTimeSteps*time;
int itime = clamp((int)floor(f),0,(int)mesh->numTimeSteps-2);
float time1 = f-itime;
float time0 = 1.0f-time1;
const Vec3fa ap0 = mesh->positions[itime+0][i+0];
const Vec3fa ap1 = mesh->positions[itime+0][i+1];
const Vec3fa at0 = mesh->tangents[itime+0][i+0];
const Vec3fa at1 = mesh->tangents[itime+0][i+1];
const Vec3fa bp0 = mesh->positions[itime+1][i+0];
const Vec3fa bp1 = mesh->positions[itime+1][i+1];
const Vec3fa bt0 = mesh->tangents[itime+1][i+0];
const Vec3fa bt1 = mesh->tangents[itime+1][i+1];
p0 = time0*ap0 + time1*bp0;
p1 = time0*ap1 + time1*bp1;
t0 = time0*at0 + time1*bt0;
t1 = time0*at1 + time1*bt1;
}
const Vec3fa p00 = p0;
const Vec3fa p01 = p0+(1.0f/3.0f)*t0;
const Vec3fa p02 = p1-(1.0f/3.0f)*t1;
const Vec3fa p03 = p1;
const float u0 = 1.0f - u, u1 = u;
const Vec3fa p10 = p00 * u0 + p01 * u1;
const Vec3fa p11 = p01 * u0 + p02 * u1;
const Vec3fa p12 = p02 * u0 + p03 * u1;
const Vec3fa p20 = p10 * u0 + p11 * u1;
const Vec3fa p21 = p11 * u0 + p12 * u1;
//const Vec3fa p30 = p20 * u0 + p21 * u1;
return make_Vec3f(3.0f*(p21-p20));
}
inline Vec3f derivBSpline(const ISPCHairSet* uniform mesh, const unsigned int primID, const float t, const float time)
{
Vec3fa p00, p01, p02, p03;
const int i = mesh->hairs[primID].vertex;
if (mesh->numTimeSteps == 1)
{
p00 = mesh->positions[0][i+0];
p01 = mesh->positions[0][i+1];
p02 = mesh->positions[0][i+2];
p03 = mesh->positions[0][i+3];
}
else
{
float f = mesh->numTimeSteps*time;
int itime = clamp((int)floor(f),0,(int)mesh->numTimeSteps-2);
float t1 = f-itime;
float t0 = 1.0f-t1;
const Vec3fa a0 = mesh->positions[itime+0][i+0];
const Vec3fa a1 = mesh->positions[itime+0][i+1];
const Vec3fa a2 = mesh->positions[itime+0][i+2];
const Vec3fa a3 = mesh->positions[itime+0][i+3];
const Vec3fa b0 = mesh->positions[itime+1][i+0];
const Vec3fa b1 = mesh->positions[itime+1][i+1];
const Vec3fa b2 = mesh->positions[itime+1][i+2];
const Vec3fa b3 = mesh->positions[itime+1][i+3];
p00 = t0*a0 + t1*b0;
p01 = t0*a1 + t1*b1;
p02 = t0*a2 + t1*b2;
p03 = t0*a3 + t1*b3;
}
const float t0 = 1.0f - t, t1 = t;
const float n0 = -0.5f*t1*t1;
const float n1 = -0.5f*t0*t0 - 2.0f*(t0*t1);
const float n2 = 0.5f*t1*t1 + 2.0f*(t1*t0);
const float n3 = 0.5f*t0*t0;
return make_Vec3f(n0*p00 + n1*p01 + n2*p02 + n3*p03);
}
void postIntersectGeometry(const Ray& ray, DifferentialGeometry& dg, uniform ISPCGeometry* uniform geometry, int& materialID)
{
if (geometry->type == TRIANGLE_MESH)
{
uniform ISPCTriangleMesh* uniform mesh = (uniform ISPCTriangleMesh* uniform) geometry;
materialID = mesh->geom.materialID;
if (mesh->texcoords)
{
ISPCTriangle* tri = &mesh->triangles[dg.primID];
const Vec2f st0 = mesh->texcoords[tri->v0];
const Vec2f st1 = mesh->texcoords[tri->v1];
const Vec2f st2 = mesh->texcoords[tri->v2];
const float u = ray.u, v = ray.v, w = 1.0f-ray.u-ray.v;
const Vec2f st = w*st0 + u*st1 + v*st2;
dg.u = st.x;
dg.v = st.y;
}
if (mesh->normals)
{
if (mesh->numTimeSteps == 1)
{
ISPCTriangle* tri = &mesh->triangles[dg.primID];
const Vec3f n0 = make_Vec3f(mesh->normals[0][tri->v0]);
const Vec3f n1 = make_Vec3f(mesh->normals[0][tri->v1]);
const Vec3f n2 = make_Vec3f(mesh->normals[0][tri->v2]);
const float u = ray.u, v = ray.v, w = 1.0f-ray.u-ray.v;
dg.Ns = w*n0 + u*n1 + v*n2;
}
else
{
ISPCTriangle* tri = &mesh->triangles[dg.primID];
float f = mesh->numTimeSteps*ray.time;
int itime = clamp((int)floor(f),0,(int)mesh->numTimeSteps-2);
float t1 = f-itime;
float t0 = 1.0f-t1;
const Vec3f a0 = make_Vec3f(mesh->normals[itime+0][tri->v0]);
const Vec3f a1 = make_Vec3f(mesh->normals[itime+0][tri->v1]);
const Vec3f a2 = make_Vec3f(mesh->normals[itime+0][tri->v2]);
const Vec3f b0 = make_Vec3f(mesh->normals[itime+1][tri->v0]);
const Vec3f b1 = make_Vec3f(mesh->normals[itime+1][tri->v1]);
const Vec3f b2 = make_Vec3f(mesh->normals[itime+1][tri->v2]);
const Vec3f n0 = t0*a0 + t1*b0;
const Vec3f n1 = t0*a1 + t1*b1;
const Vec3f n2 = t0*a2 + t1*b2;
const float u = ray.u, v = ray.v, w = 1.0f-ray.u-ray.v;
dg.Ns = w*n0 + u*n1 + v*n2;
}
}
}
else if (geometry->type == QUAD_MESH)
{
uniform ISPCQuadMesh* uniform mesh = (uniform ISPCQuadMesh* uniform) geometry;
materialID = mesh->geom.materialID;
if (mesh->texcoords)
{
ISPCQuad* quad = &mesh->quads[dg.primID];
const Vec2f st0 = mesh->texcoords[quad->v0];
const Vec2f st1 = mesh->texcoords[quad->v1];
const Vec2f st2 = mesh->texcoords[quad->v2];
const Vec2f st3 = mesh->texcoords[quad->v3];
if (ray.u+ray.v < 1.0f) {
const float u = ray.u, v = ray.v; const float w = 1.0f-u-v;
const Vec2f st = w*st0 + u*st1 + v*st3;
dg.u = st.x;
dg.v = st.y;
} else {
const float u = 1.0f-ray.u, v = 1.0f-ray.v; const float w = 1.0f-u-v;
const Vec2f st = w*st2 + u*st3 + v*st1;
dg.u = st.x;
dg.v = st.y;
}
}
if (mesh->normals)
{
if (mesh->numTimeSteps == 1)
{
ISPCQuad* quad = &mesh->quads[dg.primID];
const Vec3f n0 = make_Vec3f(mesh->normals[0][quad->v0]);
const Vec3f n1 = make_Vec3f(mesh->normals[0][quad->v1]);
const Vec3f n2 = make_Vec3f(mesh->normals[0][quad->v2]);
const Vec3f n3 = make_Vec3f(mesh->normals[0][quad->v3]);
if (ray.u+ray.v < 1.0f) {
const float u = ray.u, v = ray.v; const float w = 1.0f-u-v;
dg.Ns = w*n0 + u*n1 + v*n3;
} else {
const float u = 1.0f-ray.u, v = 1.0f-ray.v; const float w = 1.0f-u-v;
dg.Ns = w*n2 + u*n3 + v*n1;
}
}
else
{
ISPCQuad* quad = &mesh->quads[dg.primID];
float f = mesh->numTimeSteps*ray.time;
int itime = clamp((int)floor(f),0,(int)mesh->numTimeSteps-2);
float t1 = f-itime;
float t0 = 1.0f-t1;
const Vec3f a0 = make_Vec3f(mesh->normals[itime+0][quad->v0]);
const Vec3f a1 = make_Vec3f(mesh->normals[itime+0][quad->v1]);
const Vec3f a2 = make_Vec3f(mesh->normals[itime+0][quad->v2]);
const Vec3f a3 = make_Vec3f(mesh->normals[itime+0][quad->v3]);
const Vec3f b0 = make_Vec3f(mesh->normals[itime+1][quad->v0]);
const Vec3f b1 = make_Vec3f(mesh->normals[itime+1][quad->v1]);
const Vec3f b2 = make_Vec3f(mesh->normals[itime+1][quad->v2]);
const Vec3f b3 = make_Vec3f(mesh->normals[itime+1][quad->v3]);
const Vec3f n0 = t0*a0 + t1*b0;
const Vec3f n1 = t0*a1 + t1*b1;
const Vec3f n2 = t0*a2 + t1*b2;
const Vec3f n3 = t0*a3 + t1*b3;
if (ray.u+ray.v < 1.0f) {
const float u = ray.u, v = ray.v; const float w = 1.0f-u-v;
dg.Ns = w*n0 + u*n1 + v*n3;
} else {
const float u = 1.0f-ray.u, v = 1.0f-ray.v; const float w = 1.0f-u-v;
dg.Ns = w*n2 + u*n3 + v*n1;
}
}
}
}
else if (geometry->type == SUBDIV_MESH)
{
uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
materialID = mesh->geom.materialID;
if (g_use_smooth_normals)
{
Vec3f dPdu,dPdv;
rtcInterpolateV1(mesh->geom.geometry,dg.primID,dg.u,dg.v,RTC_BUFFER_TYPE_VERTEX,0,NULL,&dPdu.x,&dPdv.x,3);
dg.Ns = normalize(cross(dPdv,dPdu));
}
const Vec2f st = getTextureCoordinatesSubdivMesh(mesh,dg.primID,ray.u,ray.v);
dg.u = st.x;
dg.v = st.y;
}
else if (geometry->type == GRID_MESH)
{
uniform ISPCGridMesh* uniform mesh = (uniform ISPCGridMesh* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == POINTS)
{
uniform ISPCPointSet* uniform mesh = (uniform ISPCPointSet* uniform) geometry;
materialID = mesh->geom.materialID;
}
else if (geometry->type == CURVES)
{
uniform ISPCHairSet* uniform mesh = (uniform ISPCHairSet* uniform) geometry;
materialID = mesh->geom.materialID;
if (mesh->type == RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE)
{
dg.Tx = normalize(dg.Ng);
dg.Ty = normalize(cross(neg(ray.dir),dg.Tx));
dg.Ng = normalize(cross(dg.Ty,dg.Tx));
}
else if (mesh->type == RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE)
{
Vec3f dp = derivBezier(mesh,dg.primID,ray.u,ray.time);
if (reduce_max(abs(dp)) < 1E-6f) dp = make_Vec3f(1,1,1);
dg.Tx = normalize(make_Vec3f(dp));
dg.Ty = normalize(cross(make_Vec3f(dp),dg.Ng));
dg.Ng = dg.Ns = normalize(dg.Ng);
dg.eps = 1024.0f*1.19209e-07f*max(max(abs(dg.P.x),abs(dg.P.y)),max(abs(dg.P.z),ray.tfar));
}
else if (mesh->type == RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE)
{
Vec3f dp = derivBezier(mesh,dg.primID,ray.u,ray.time);
if (reduce_max(abs(dp)) < 1E-6f) dp = make_Vec3f(1,1,1);
dg.Tx = normalize(dp);
dg.Ty = normalize(cross(neg(ray.dir),dg.Tx));
dg.Ng = dg.Ns = normalize(cross(dg.Ty,dg.Tx));
}
else if (mesh->type == RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE)
{
Vec3f dp = derivBSpline(mesh,dg.primID,ray.u,ray.time);
if (reduce_max(abs(dp)) < 1E-6f) dp = make_Vec3f(1,1,1);
dg.Tx = normalize(make_Vec3f(dp));
dg.Ty = normalize(cross(make_Vec3f(dp),dg.Ng));
dg.Ng = dg.Ns = normalize(dg.Ng);
dg.eps = 1024.0f*1.19209e-07f*max(max(abs(dg.P.x),abs(dg.P.y)),max(abs(dg.P.z),ray.tfar));
}
else if (mesh->type == RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE)
{
Vec3f dp = derivBSpline(mesh,dg.primID,ray.u,ray.time);
if (reduce_max(abs(dp)) < 1E-6f) dp = make_Vec3f(1,1,1);
dg.Tx = normalize(dp);
dg.Ty = normalize(cross(neg(ray.dir),dg.Tx));
dg.Ng = dg.Ns = normalize(cross(dg.Ty,dg.Tx));
}
else if (mesh->type == RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE)
{
Vec3f dp = derivHermite(mesh,dg.primID,ray.u,ray.time);
if (reduce_max(abs(dp)) < 1E-6f) dp = make_Vec3f(1,1,1);
dg.Tx = normalize(make_Vec3f(dp));
dg.Ty = normalize(cross(make_Vec3f(dp),dg.Ng));
dg.Ng = dg.Ns = normalize(dg.Ng);
dg.eps = 1024.0f*1.19209e-07f*max(max(abs(dg.P.x),abs(dg.P.y)),max(abs(dg.P.z),ray.tfar));
}
else if (mesh->type == RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE)
{
Vec3f dp = derivHermite(mesh,dg.primID,ray.u,ray.time);
if (reduce_max(abs(dp)) < 1E-6f) dp = make_Vec3f(1,1,1);
dg.Tx = normalize(dp);
dg.Ty = normalize(cross(neg(ray.dir),dg.Tx));
dg.Ng = dg.Ns = normalize(cross(dg.Ty,dg.Tx));
}
}
else
assert(false);
if (max(max(abs(dg.Ns.x), abs(dg.Ns.y)), abs(dg.Ns.z)) < 1E-4f)
dg.Ns = make_Vec3f(1, 0, 0);
}
AffineSpace3f calculate_interpolated_space (uniform ISPCInstance* instance, float gtime)
{
if (instance->numTimeSteps == 1)
return make_AffineSpace3f(instance->spaces[0]);
/* calculate time segment itime and fractional time ftime */
const int time_segments = instance->numTimeSteps-1;
const float time = gtime*(float)(time_segments);
const int itime = clamp((int)(floor(time)),(varying int)0,time_segments-1);
const float ftime = time - (float)(itime);
return (1.0f-ftime)*make_AffineSpace3f(instance->spaces[itime+0]) + ftime*make_AffineSpace3f(instance->spaces[itime+1]);
}
typedef ISPCInstance* ISPCInstancePtr;
inline int postIntersect(const Ray& ray, DifferentialGeometry& dg)
{
dg.eps = 32.0f*1.19209e-07f*max(max(abs(dg.P.x),abs(dg.P.y)),max(abs(dg.P.z),ray.tfar));
AffineSpace3f local2world = make_AffineSpace3f_scale(make_Vec3f(1));
ISPCGeometry* uniform* geometries = g_ispc_scene->geometries;
for (uniform int i=0; i<RTC_MAX_INSTANCE_LEVEL_COUNT; i++)
{
const unsigned int instID = dg.instIDs[i];
if (instID == -1) break;
ISPCInstance* instance = (ISPCInstancePtr) geometries[instID];
local2world = local2world * calculate_interpolated_space(instance,ray.time);
assert(instance->child->type == GROUP);
geometries = ((ISPCGroup*)instance->child)->geometries;
}
int materialID = 0;
ISPCGeometry* geom = geometries[dg.geomID];
foreach_unique (g in geom) {
postIntersectGeometry(ray,dg,g,materialID);
}
dg.Ng = xfmVector(local2world,dg.Ng);
dg.Ns = xfmVector(local2world,dg.Ns);
return materialID;
}
unmasked void intersectionFilterReject(const RTCFilterFunctionNArguments* uniform args)
{
assert(args->N == programCount);
bool valid = *((varying int* uniform) args->valid);
if (!valid) return;
}
unmasked void intersectionFilterOBJ(const RTCFilterFunctionNArguments* uniform args)
{
uniform int* uniform valid_i = args->valid;
struct RTCRayHitN* uniform _ray = (struct RTCRayHitN* uniform)args->ray;
struct RTCHitN* uniform hit = args->hit;
const uniform unsigned int N = args->N;
assert(N == programCount);
bool valid = *((varying int* uniform) valid_i);
if (!valid) return;
const uniform unsigned int rayID = 0;
varying Ray *uniform ray = (varying Ray* uniform)_ray;
/* compute differential geometry */
//const float tfar = RTCHitN_t(hit,N,rayID);
const float tfar = ray->tfar;
DifferentialGeometry dg;
for (uniform int i=0; i<RTC_MAX_INSTANCE_LEVEL_COUNT; i++)
dg.instIDs[i] = RTCHitN_instID(hit,N,rayID, i);
dg.geomID = RTCHitN_geomID(hit,N,rayID);
dg.primID = RTCHitN_primID(hit,N,rayID);
dg.u = RTCHitN_u(hit,N,rayID);
dg.v = RTCHitN_v(hit,N,rayID);
Vec3f Ng = make_Vec3f(RTCHitN_Ng_x(hit,N,rayID),
RTCHitN_Ng_y(hit,N,rayID),
RTCHitN_Ng_z(hit,N,rayID));
dg.P = ray->org+tfar*ray->dir;
dg.Ng = Ng;
dg.Ns = Ng;
int materialID = postIntersect(*ray,dg);
dg.Ng = face_forward(ray->dir,normalize(dg.Ng));
if (length(dg.Ns) < 1E-6f) dg.Ns = dg.Ng;
else dg.Ns = face_forward(ray->dir,normalize(dg.Ns));
const Vec3f wo = neg(ray->dir);
/* calculate BRDF */
BRDF brdf; brdf.Kt = make_Vec3f(0,0,0);
uniform int numMaterials = g_ispc_scene->numMaterials;
ISPCMaterial** uniform material_array = &g_ispc_scene->materials[0];
Medium medium = make_Medium_Vacuum();
Material__preprocess(material_array,materialID,numMaterials,brdf,wo,dg,medium);
if (min(min(brdf.Kt.x,brdf.Kt.y),brdf.Kt.z) < 1.0f)
ray->tfar = tfar;
else
valid_i[programIndex] = 0;
}
unmasked void occlusionFilterOpaque(const RTCFilterFunctionNArguments* uniform args)
{
uniform IntersectContext* uniform context = (uniform IntersectContext* uniform) args->context;
varying Vec3f* uniform transparency = (varying Vec3f* uniform) context->userRayExt;
if (!transparency) return;
uniform int* uniform valid_i = args->valid;
assert(args->N == programCount);
bool valid = *((varying int* uniform) valid_i);
if (!valid) return;
*transparency = make_Vec3f(0.0f);
}
unmasked void occlusionFilterOBJ(const RTCFilterFunctionNArguments* uniform args)
{
uniform IntersectContext* uniform context = (uniform IntersectContext* uniform) args->context;
varying Vec3f* uniform transparency = (varying Vec3f* uniform) context->userRayExt;
if (!transparency) return;
uniform int* uniform valid_i = args->valid;
struct RTCRayHitN* uniform _ray = (struct RTCRayHitN* uniform)args->ray;
struct RTCHitN* uniform hit = args->hit;
const uniform unsigned int N = args->N;
assert(N == programCount);
bool valid = *((varying int* uniform) valid_i);
if (!valid) return;
const uniform unsigned int rayID = 0;
varying Ray *uniform ray = (varying Ray* uniform)_ray;
/* compute differential geometry */
//const float tfar = RTCHitN_t(hit,N,rayID);
const float tfar = ray->tfar;
DifferentialGeometry dg;
for (uniform int i=0; i<RTC_MAX_INSTANCE_LEVEL_COUNT; i++)
dg.instIDs[i] = RTCHitN_instID(hit,N,rayID, i);
dg.geomID = RTCHitN_geomID(hit,N,rayID);
dg.primID = RTCHitN_primID(hit,N,rayID);
dg.u = RTCHitN_u(hit,N,rayID);
dg.v = RTCHitN_v(hit,N,rayID);
Vec3f Ng = make_Vec3f(RTCHitN_Ng_x(hit,N,rayID),
RTCHitN_Ng_y(hit,N,rayID),
RTCHitN_Ng_z(hit,N,rayID));
dg.P = ray->org+tfar*ray->dir;
dg.Ng = Ng;
dg.Ns = Ng;
int materialID = postIntersect(*ray,dg);
dg.Ng = face_forward(ray->dir,normalize(dg.Ng));
dg.Ns = face_forward(ray->dir,normalize(dg.Ns));
const Vec3f wo = neg(ray->dir);
/* calculate BRDF */
BRDF brdf; brdf.Kt = make_Vec3f(0,0,0);
uniform int numMaterials = g_ispc_scene->numMaterials;
ISPCMaterial** uniform material_array = &g_ispc_scene->materials[0];
Medium medium = make_Medium_Vacuum();
Material__preprocess(material_array,materialID,numMaterials,brdf,wo,dg,medium);
*transparency = *transparency * brdf.Kt;
if (max(max(transparency->x,transparency->y),transparency->z) > 0.0f)
valid_i[programIndex] = 0;
}
/* occlusion filter function */
unmasked void occlusionFilterHair(const RTCFilterFunctionNArguments* uniform args)
{
uniform IntersectContext* uniform context = (uniform IntersectContext* uniform) args->context;
varying Vec3f* uniform transparency = (varying Vec3f* uniform) context->userRayExt;
if (!transparency) return;
uniform int* uniform valid_i = args->valid;
struct RTCHitN* uniform hit = args->hit;
const uniform unsigned int N = args->N;
assert(N == programCount);
bool valid = *((varying int* uniform) valid_i);
if (!valid) return;
const uniform unsigned int rayID = 0;
unsigned int hit_geomID = RTCHitN_geomID(hit,N,rayID);
Vec3f Kt = make_Vec3f(0.0f);
foreach_unique(geomID in hit_geomID)
{
uniform ISPCGeometry* uniform geometry = g_ispc_scene->geometries[geomID];
if (geometry->type == CURVES)
{
uniform int materialID = ((ISPCHairSet* uniform)geometry)->geom.materialID;
ISPCMaterial* uniform material = g_ispc_scene->materials[materialID];
switch (material->type) {
case MATERIAL_HAIR: Kt = make_Vec3f(((uniform ISPCHairMaterial* uniform)material)->Kt); break;
default: break;
}
}
}
Kt = Kt * *transparency;
*transparency = Kt;
if (max(max(transparency->x,transparency->y),transparency->z) > 0.0f)
valid_i[programIndex] = 0;
}
Vec3f renderPixelFunction(float x, float y, RandomSampler& sampler, const uniform ISPCCamera& camera, uniform RayStats& stats)
{
/* radiance accumulator and weight */
Vec3f L = make_Vec3f(0.0f);
Vec3f Lw = make_Vec3f(1.0f);
Medium medium = make_Medium_Vacuum();
float time = RandomSampler_get1D(sampler);
/* initialize ray */
Ray ray = make_Ray(make_Vec3f(camera.xfm.p),
make_Vec3f(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)),0.0f,inf,time);
DifferentialGeometry dg;
/* iterative path tracer loop */
for (uniform int i=0; i<g_max_path_length; i++)
{
/* terminate if contribution too low */
if (max(Lw.x,max(Lw.y,Lw.z)) < 0.01f)
break;
/* intersect ray with scene */
uniform IntersectContext context;
InitIntersectionContext(&context);
context.context.flags = (i == 0) ? g_iflags_coherent : g_iflags_incoherent;
rtcIntersectV(g_scene,&context.context,RTCRayHit_(ray));
RayStats_addRay(stats);
const Vec3f wo = neg(ray.dir);
/* invoke environment lights if nothing hit */
if (ray.geomID == RTC_INVALID_GEOMETRY_ID)
{
//L = L + Lw*make_Vec3f(1.0f);
/* iterate over all lights */
for (uniform unsigned int i=0; i<g_ispc_scene->numLights; i++)
{
const uniform Light* uniform l = g_ispc_scene->lights[i];
Light_EvalRes le = l->eval(l,dg,ray.dir);
L = L + Lw*le.value;
}
break;
}
Vec3f Ns = normalize(ray.Ng);
/* compute differential geometry */
for (uniform int i=0; i<RTC_MAX_INSTANCE_LEVEL_COUNT; i++)
dg.instIDs[i] = ray.instID[i];
dg.geomID = ray.geomID;
dg.primID = ray.primID;
dg.u = ray.u;
dg.v = ray.v;
dg.P = ray.org+ray.tfar*ray.dir;
dg.Ng = ray.Ng;
dg.Ns = Ns;
int materialID = postIntersect(ray,dg);
dg.Ng = face_forward(ray.dir,normalize(dg.Ng));
dg.Ns = face_forward(ray.dir,normalize(dg.Ns));
/*! Compute simple volumetric effect. */
Vec3f c = make_Vec3f(1.0f);
const Vec3f transmission = medium.transmission;
if (ne(transmission,make_Vec3f(1.0f)))
c = c * pow(transmission,ray.tfar);
/* calculate BRDF */
BRDF brdf;
uniform int numMaterials = g_ispc_scene->numMaterials;
ISPCMaterial** uniform material_array = &g_ispc_scene->materials[0];
Material__preprocess(material_array,materialID,numMaterials,brdf,wo,dg,medium);
/* sample BRDF at hit point */
Sample3f wi1;
c = c * Material__sample(material_array,materialID,numMaterials,brdf,Lw, wo, dg, wi1, medium, RandomSampler_get2D(sampler));
/* iterate over lights */
context.context.flags = g_iflags_incoherent;
for (uniform unsigned int i=0; i<g_ispc_scene->numLights; i++)
{
const uniform Light* uniform l = g_ispc_scene->lights[i];
Light_SampleRes ls = l->sample(l,dg,RandomSampler_get2D(sampler));
if (ls.pdf <= 0.0f) continue;
Vec3f transparency = make_Vec3f(1.0f);
Ray shadow = make_Ray(dg.P,ls.dir,dg.eps,ls.dist,time);
context.userRayExt = &transparency;
rtcOccludedV(g_scene,&context.context,RTCRay_(shadow));
RayStats_addShadowRay(stats);
//if (shadow.geomID != RTC_INVALID_GEOMETRY_ID) continue;
if (max(max(transparency.x,transparency.y),transparency.z) > 0.0f)
L = L + Lw*ls.weight*transparency*Material__eval(material_array,materialID,numMaterials,brdf,wo,dg,ls.dir);
}
if (wi1.pdf <= 1E-4f /* 0.0f */) break;
Lw = Lw*c/wi1.pdf;
/* setup secondary ray */
float sign = dot(wi1.v,dg.Ng) < 0.0f ? -1.0f : 1.0f;
dg.P = dg.P + sign*dg.eps*dg.Ng;
init_Ray(ray, dg.P,normalize(wi1.v),dg.eps,inf,time);
}
return L;
}
/* task that renders a single screen tile */
Vec3f renderPixelStandard(float x, float y, const uniform ISPCCamera& camera, uniform RayStats& stats)
{
RandomSampler sampler;
Vec3f L = make_Vec3f(0.0f);
for (uniform int i=0; i<g_spp; i++)
{
RandomSampler_init(sampler, (int)x, (int)y, g_accu_count*g_spp+i);
/* calculate pixel color */
float fx = x + RandomSampler_get1D(sampler);
float fy = y + RandomSampler_get1D(sampler);
L = L + renderPixelFunction(fx,fy,sampler,camera,stats);
}
L = L/(uniform float)g_spp;
return L;
}
/* renders a single screen tile */
void renderTileStandard(uniform int taskIndex,
uniform int threadIndex,
uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
const uniform unsigned int tileY = taskIndex / numTilesX;
const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
const uniform unsigned int x0 = tileX * TILE_SIZE_X;
const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
/* calculate pixel color */
Vec3f color = renderPixelStandard((float)x,(float)y,camera,g_stats[threadIndex]);
/* write color to framebuffer */
Vec3ff accu_color = g_accu[y*width+x] + make_Vec3ff(color.x,color.y,color.z,1.0f); g_accu[y*width+x] = accu_color;
float f = rcp(max(0.001f,accu_color.w));
unsigned int r = (unsigned int) (255.01f * clamp(accu_color.x*f,0.0f,1.0f));
unsigned int g = (unsigned int) (255.01f * clamp(accu_color.y*f,0.0f,1.0f));
unsigned int b = (unsigned int) (255.01f * clamp(accu_color.z*f,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
}
/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
/***************************************************************************************/
inline uniform float updateEdgeLevel( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos, const uniform unsigned int e0, const uniform unsigned int e1)
{
const uniform Vec3fa v0 = mesh->positions[0][mesh->position_indices[e0]];
const uniform Vec3fa v1 = mesh->positions[0][mesh->position_indices[e1]];
const uniform Vec3fa edge = v1-v0;
const uniform Vec3fa P = 0.5f*(v1+v0);
const uniform Vec3fa dist = cam_pos - P;
return max(min(LEVEL_FACTOR*(0.5f*length(edge)/length(dist)),MAX_EDGE_LEVEL),MIN_EDGE_LEVEL);
}
void updateEdgeLevelBuffer( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos, uniform unsigned int startID, uniform unsigned int endID )
{
for (uniform unsigned int f=startID; f<endID;f++)
{
uniform unsigned int e = mesh->face_offsets[f];
uniform unsigned int N = mesh->verticesPerFace[f];
if (N == 4) /* fast path for quads */
for (uniform unsigned int i=0; i<4; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%4);
else if (N == 3) /* fast path for triangles */
for (uniform unsigned int i=0; i<3; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%3);
else /* fast path for general polygons */
for (uniform unsigned int i=0; i<N; i++)
mesh->subdivlevel[e+i] = updateEdgeLevel(mesh,cam_pos,e+(i+0),e+(i+1)%N);
}
}
#if defined(ISPC)
task void updateEdgeLevelBufferTask( uniform ISPCSubdivMesh* uniform mesh, const uniform Vec3fa& cam_pos )
{
const uniform unsigned int size = mesh->numFaces;
const uniform unsigned int startID = ((taskIndex+0)*size)/taskCount;
const uniform unsigned int endID = ((taskIndex+1)*size)/taskCount;
updateEdgeLevelBuffer(mesh,cam_pos,startID,endID);
}
#endif
void updateEdgeLevels(uniform ISPCScene* uniform scene_in, const uniform Vec3fa& cam_pos)
{
for (uniform unsigned int g=0; g<scene_in->numGeometries; g++)
{
uniform ISPCGeometry* uniform geometry = g_ispc_scene->geometries[g];
if (geometry->type != SUBDIV_MESH) continue;
uniform ISPCSubdivMesh* uniform mesh = (uniform ISPCSubdivMesh* uniform) geometry;
#if defined(ISPC)
launch[ (mesh->numFaces+4095)/4096 ] updateEdgeLevelBufferTask(mesh,cam_pos); sync;
#else
updateEdgeLevelBuffer(mesh,cam_pos,0,mesh->numFaces);
#endif
rtcUpdateGeometryBuffer(geometry->geometry,RTC_BUFFER_TYPE_LEVEL,0);
rtcCommitGeometry(geometry->geometry);
}
}
/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
/* initialize last seen camera */
g_accu_vx = make_Vec3fa(0.0f);
g_accu_vy = make_Vec3fa(0.0f);
g_accu_vz = make_Vec3fa(0.0f);
g_accu_p = make_Vec3fa(0.0f);
} // device_init
export void renderFrameStandard (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
/* render image */
const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
}
/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
/* create scene */
if (g_scene == NULL) {
g_scene = convertScene(g_ispc_scene);
if (g_subdiv_mode) updateEdgeLevels(g_ispc_scene,camera.xfm.p);
rtcCommitScene (g_scene);
}
/* create accumulator */
if (g_accu_width != width || g_accu_height != height) {
delete[] g_accu;
g_accu = uniform new uniform Vec3ff[width*height];
g_accu_width = width;
g_accu_height = height;
for (uniform unsigned int i=0; i<width*height; i++)
g_accu[i] = make_Vec3ff(0.0f);
}
/* reset accumulator */
uniform bool camera_changed = g_changed || !g_accumulate || g_animation_mode; g_changed = false;
camera_changed |= ne(g_accu_vx,camera.xfm.l.vx); g_accu_vx = camera.xfm.l.vx;
camera_changed |= ne(g_accu_vy,camera.xfm.l.vy); g_accu_vy = camera.xfm.l.vy;
camera_changed |= ne(g_accu_vz,camera.xfm.l.vz); g_accu_vz = camera.xfm.l.vz;
camera_changed |= ne(g_accu_p, camera.xfm.p); g_accu_p = camera.xfm.p;
if (camera_changed)
{
g_accu_count=0;
for (uniform unsigned int i=0; i<width*height; i++)
g_accu[i] = make_Vec3ff(0.0f);
if (g_subdiv_mode) {
updateEdgeLevels(g_ispc_scene,camera.xfm.p);
rtcCommitScene (g_scene);
}
}
else
g_accu_count++;
if (g_animation_mode)
UpdateScene(g_ispc_scene, time);
} // device_render
/* called by the C++ code for cleanup */
export void device_cleanup ()
{
rtcReleaseScene (g_scene); g_scene = NULL;
delete[] g_accu; g_accu = NULL;
g_accu_width = 0;
g_accu_height = 0;
g_accu_count = 0;
} // device_cleanup
|