1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "point_geometry_device.isph"
RTCScene g_scene = NULL;
uniform TutorialData data;
/* add point geometry */
void addPoints (RTCScene scene, uniform RTCGeometryType gtype, const uniform Vec3f& pos)
{
RandomSampler rng;
RandomSampler_init(rng, 42);
#define COORD extract(RandomSampler_get1D(rng), 0) * 4.f - 2.f
#define RADIUS extract(RandomSampler_get1D(rng), 0) * 0.13f + 0.02f
#define COLOR extract(RandomSampler_get1D(rng), 0)
#define NORMAL extract(RandomSampler_get1D(rng), 0) * 2.f - 1.f
RTCGeometry geom = rtcNewGeometry (g_device, gtype);
uniform Vec4f* uniform point_vertices = (uniform Vec4f* uniform)rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, sizeof(uniform Vec4f), NUM_POINTS);
for (uniform int i = 0; i < NUM_POINTS; i++)
{
const uniform float vx = COORD;
const uniform float vy = COORD;
const uniform float vz = COORD;
const uniform float vr = RADIUS;
point_vertices[i] = make_Vec4f(pos.x,pos.y,pos.z,0.0f) + make_Vec4f(vx, vy, vz, vr);
const uniform float cr = COLOR;
const uniform float cg = COLOR;
const uniform float cb = COLOR;
data.point_colors[i] = make_Vec3f(cr,cg,cb);
}
if (gtype == RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT) {
uniform Vec3fa* uniform point_normals = (uniform Vec3fa* uniform)rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_NORMAL, 0, RTC_FORMAT_FLOAT3, sizeof(uniform Vec3fa), NUM_POINTS);
for (uniform int i = 0; i < NUM_POINTS; i++) {
const uniform float nx = NORMAL;
const uniform float ny = NORMAL;
const uniform float nz = NORMAL;
point_normals[i] = make_Vec3fa(nx,ny,nz);
point_normals[i] = normalize(point_normals[i]);
}
}
rtcCommitGeometry(geom);
rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
}
/* adds a ground plane to the scene */
uniform unsigned int addGroundPlane (RTCScene scene_i)
{
/* create a triangulated plane with 2 triangles and 4 vertices */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
uniform Vertex* uniform vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(uniform Vertex), 4);
vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;
/* set triangles */
uniform Triangle* uniform triangles = (uniform Triangle* uniform) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(uniform Triangle), 2);
triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
rtcCommitGeometry(geom);
uniform unsigned int geomID = rtcAttachGeometry(scene_i,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
/* create scene */
TutorialData_Constructor(&data);
g_scene = data.g_scene = rtcNewScene(g_device);
/* add ground plane */
addGroundPlane(g_scene);
/* add curve */
addPoints(g_scene, RTC_GEOMETRY_TYPE_SPHERE_POINT, make_Vec3f( 0.0f, 0.0f, 0.0f));
addPoints(g_scene, RTC_GEOMETRY_TYPE_DISC_POINT, make_Vec3f( 5.0f, 0.0f, 0.0f));
addPoints(g_scene, RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT, make_Vec3f(-5.0f, 0.0f, 0.0f));
/* commit changes to scene */
rtcCommitScene (g_scene);
}
/* task that renders a single screen tile */
void renderPixelStandard(const uniform TutorialData& data,
int x, int y,
uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const float time,
const uniform ISPCCamera& camera, uniform RayStats& stats)
{
uniform RTCIntersectContext context;
rtcInitIntersectContext(&context);
/* initialize ray */
Ray ray = make_Ray(make_Vec3f(camera.xfm.p), make_Vec3f(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);
/* intersect ray with scene */
rtcIntersectV(data.g_scene,&context,RTCRayHit_(ray));
RayStats_addRay(stats);
/* shade pixels */
Vec3f color = make_Vec3f(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
/* interpolate diffuse color */
Vec3f diffuse = data.point_colors[ray.geomID ? ray.primID : 0];
/* calculate smooth shading normal */
Vec3f Ng = normalize(ray.Ng);
color = color + diffuse*0.5f;
Vec3f lightDir = normalize(make_Vec3f(-1,-1,-1));
/* initialize shadow ray */
Ray shadow = make_Ray(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf, 0.0f);
/* trace shadow ray */
rtcOccludedV(data.g_scene,&context,RTCRay_(shadow));
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f) {
Vec3f r = normalize(reflect(ray.dir,Ng));
float s = pow(clamp(dot(r,lightDir),0.0f,1.0f),10.0f);
float d = clamp(-dot(lightDir,Ng),0.0f,1.0f);
color = color + diffuse*d + 0.5f*make_Vec3f(s);
}
}
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
const uniform unsigned int tileY = taskIndex / numTilesX;
const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
const uniform unsigned int x0 = tileX * TILE_SIZE_X;
const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
}
}
export void renderFrameStandard (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
}
/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
}
/* called by the C++ code for cleanup */
export void device_cleanup ()
{
TutorialData_Destructor(&data);
}
|