1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "parallel_for.h"
namespace embree
{
template<typename ArrayArray, typename Func>
__forceinline void sequential_for_for( ArrayArray& array2, const size_t minStepSize, const Func& func )
{
size_t k=0;
for (size_t i=0; i!=array2.size(); ++i) {
const size_t N = array2[i]->size();
if (N) func(array2[i],range<size_t>(0,N),k);
k+=N;
}
}
class ParallelForForState
{
public:
enum { MAX_TASKS = 64 };
__forceinline ParallelForForState ()
: taskCount(0) {}
template<typename ArrayArray>
__forceinline ParallelForForState (ArrayArray& array2, const size_t minStepSize) {
init(array2,minStepSize);
}
template<typename SizeFunc>
__forceinline ParallelForForState (const size_t numArrays, const SizeFunc& getSize, const size_t minStepSize) {
init(numArrays,getSize,minStepSize);
}
template<typename SizeFunc>
__forceinline void init ( const size_t numArrays, const SizeFunc& getSize, const size_t minStepSize )
{
/* first calculate total number of elements */
size_t N = 0;
for (size_t i=0; i<numArrays; i++) {
N += getSize(i);
}
this->N = N;
/* calculate number of tasks to use */
const size_t numThreads = TaskScheduler::threadCount();
const size_t numBlocks = (N+minStepSize-1)/minStepSize;
taskCount = max(size_t(1),min(numThreads,numBlocks,size_t(ParallelForForState::MAX_TASKS)));
/* calculate start (i,j) for each task */
size_t taskIndex = 0;
i0[taskIndex] = 0;
j0[taskIndex] = 0;
size_t k0 = (++taskIndex)*N/taskCount;
for (size_t i=0, k=0; taskIndex < taskCount; i++)
{
assert(i<numArrays);
size_t j=0, M = getSize(i);
while (j<M && k+M-j >= k0 && taskIndex < taskCount) {
assert(taskIndex<taskCount);
i0[taskIndex] = i;
j0[taskIndex] = j += k0-k;
k=k0;
k0 = (++taskIndex)*N/taskCount;
}
k+=M-j;
}
}
template<typename ArrayArray>
__forceinline void init ( ArrayArray& array2, const size_t minStepSize )
{
init(array2.size(),[&](size_t i) { return array2[i] ? array2[i]->size() : 0; },minStepSize);
}
__forceinline size_t size() const {
return N;
}
public:
size_t i0[MAX_TASKS];
size_t j0[MAX_TASKS];
size_t taskCount;
size_t N;
};
template<typename ArrayArray, typename Func>
__forceinline void parallel_for_for( ArrayArray& array2, const size_t minStepSize, const Func& func )
{
ParallelForForState state(array2,minStepSize);
parallel_for(state.taskCount, [&](const size_t taskIndex)
{
/* calculate range */
const size_t k0 = (taskIndex+0)*state.size()/state.taskCount;
const size_t k1 = (taskIndex+1)*state.size()/state.taskCount;
size_t i0 = state.i0[taskIndex];
size_t j0 = state.j0[taskIndex];
/* iterate over arrays */
size_t k=k0;
for (size_t i=i0; k<k1; i++) {
const size_t N = array2[i] ? array2[i]->size() : 0;
const size_t r0 = j0, r1 = min(N,r0+k1-k);
if (r1 > r0) func(array2[i],range<size_t>(r0,r1),k);
k+=r1-r0; j0 = 0;
}
});
}
template<typename ArrayArray, typename Func>
__forceinline void parallel_for_for( ArrayArray& array2, const Func& func )
{
parallel_for_for(array2,1,func);
}
template<typename ArrayArray, typename Value, typename Func, typename Reduction>
__forceinline Value parallel_for_for_reduce( ArrayArray& array2, const size_t minStepSize, const Value& identity, const Func& func, const Reduction& reduction )
{
ParallelForForState state(array2,minStepSize);
Value temp[ParallelForForState::MAX_TASKS];
for (size_t i=0; i<state.taskCount; i++)
temp[i] = identity;
parallel_for(state.taskCount, [&](const size_t taskIndex)
{
/* calculate range */
const size_t k0 = (taskIndex+0)*state.size()/state.taskCount;
const size_t k1 = (taskIndex+1)*state.size()/state.taskCount;
size_t i0 = state.i0[taskIndex];
size_t j0 = state.j0[taskIndex];
/* iterate over arrays */
size_t k=k0;
for (size_t i=i0; k<k1; i++) {
const size_t N = array2[i] ? array2[i]->size() : 0;
const size_t r0 = j0, r1 = min(N,r0+k1-k);
if (r1 > r0) temp[taskIndex] = reduction(temp[taskIndex],func(array2[i],range<size_t>(r0,r1),k));
k+=r1-r0; j0 = 0;
}
});
Value ret = identity;
for (size_t i=0; i<state.taskCount; i++)
ret = reduction(ret,temp[i]);
return ret;
}
template<typename ArrayArray, typename Value, typename Func, typename Reduction>
__forceinline Value parallel_for_for_reduce( ArrayArray& array2, const Value& identity, const Func& func, const Reduction& reduction)
{
return parallel_for_for_reduce(array2,1,identity,func,reduction);
}
}
|