1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "parallel_for.h"
#include "../math/range.h"
namespace embree
{
/* serial partitioning */
template<typename T, typename V, typename IsLeft, typename Reduction_T>
__forceinline size_t serial_partitioning(T* array,
const size_t begin,
const size_t end,
V& leftReduction,
V& rightReduction,
const IsLeft& is_left,
const Reduction_T& reduction_t)
{
T* l = array + begin;
T* r = array + end - 1;
while(1)
{
/* *l < pivot */
while (likely(l <= r && is_left(*l) ))
{
//prefetchw(l+4); // FIXME: enable?
reduction_t(leftReduction,*l);
++l;
}
/* *r >= pivot) */
while (likely(l <= r && !is_left(*r)))
{
//prefetchw(r-4); FIXME: enable?
reduction_t(rightReduction,*r);
--r;
}
if (r<l) break;
reduction_t(leftReduction ,*r);
reduction_t(rightReduction,*l);
xchg(*l,*r);
l++; r--;
}
return l - array;
}
template<typename T, typename V, typename Vi, typename IsLeft, typename Reduction_T, typename Reduction_V>
class __aligned(64) parallel_partition_task
{
ALIGNED_CLASS_(64);
private:
static const size_t MAX_TASKS = 64;
T* array;
size_t N;
const IsLeft& is_left;
const Reduction_T& reduction_t;
const Reduction_V& reduction_v;
const Vi& identity;
size_t numTasks;
__aligned(64) size_t counter_start[MAX_TASKS+1];
__aligned(64) size_t counter_left[MAX_TASKS+1];
__aligned(64) range<ssize_t> leftMisplacedRanges[MAX_TASKS];
__aligned(64) range<ssize_t> rightMisplacedRanges[MAX_TASKS];
__aligned(64) V leftReductions[MAX_TASKS];
__aligned(64) V rightReductions[MAX_TASKS];
public:
__forceinline parallel_partition_task(T* array,
const size_t N,
const Vi& identity,
const IsLeft& is_left,
const Reduction_T& reduction_t,
const Reduction_V& reduction_v,
const size_t BLOCK_SIZE)
: array(array), N(N), is_left(is_left), reduction_t(reduction_t), reduction_v(reduction_v), identity(identity),
numTasks(min((N+BLOCK_SIZE-1)/BLOCK_SIZE,min(TaskScheduler::threadCount(),MAX_TASKS))) {}
__forceinline const range<ssize_t>* findStartRange(size_t& index, const range<ssize_t>* const r, const size_t numRanges)
{
size_t i = 0;
while(index >= (size_t)r[i].size())
{
assert(i < numRanges);
index -= (size_t)r[i].size();
i++;
}
return &r[i];
}
__forceinline void swapItemsInMisplacedRanges(const size_t numLeftMisplacedRanges,
const size_t numRightMisplacedRanges,
const size_t startID,
const size_t endID)
{
size_t leftLocalIndex = startID;
size_t rightLocalIndex = startID;
const range<ssize_t>* l_range = findStartRange(leftLocalIndex,leftMisplacedRanges,numLeftMisplacedRanges);
const range<ssize_t>* r_range = findStartRange(rightLocalIndex,rightMisplacedRanges,numRightMisplacedRanges);
size_t l_left = l_range->size() - leftLocalIndex;
size_t r_left = r_range->size() - rightLocalIndex;
T *__restrict__ l = &array[l_range->begin() + leftLocalIndex];
T *__restrict__ r = &array[r_range->begin() + rightLocalIndex];
size_t size = endID - startID;
size_t items = min(size,min(l_left,r_left));
while (size)
{
if (unlikely(l_left == 0))
{
l_range++;
l_left = l_range->size();
l = &array[l_range->begin()];
items = min(size,min(l_left,r_left));
}
if (unlikely(r_left == 0))
{
r_range++;
r_left = r_range->size();
r = &array[r_range->begin()];
items = min(size,min(l_left,r_left));
}
size -= items;
l_left -= items;
r_left -= items;
while(items) {
items--;
xchg(*l++,*r++);
}
}
}
__forceinline size_t partition(V& leftReduction, V& rightReduction)
{
/* partition the individual ranges for each task */
parallel_for(numTasks,[&] (const size_t taskID) {
const size_t startID = (taskID+0)*N/numTasks;
const size_t endID = (taskID+1)*N/numTasks;
V local_left(identity);
V local_right(identity);
const size_t mid = serial_partitioning(array,startID,endID,local_left,local_right,is_left,reduction_t);
counter_start[taskID] = startID;
counter_left [taskID] = mid-startID;
leftReductions[taskID] = local_left;
rightReductions[taskID] = local_right;
});
counter_start[numTasks] = N;
counter_left[numTasks] = 0;
/* finalize the reductions */
for (size_t i=0; i<numTasks; i++) {
reduction_v(leftReduction,leftReductions[i]);
reduction_v(rightReduction,rightReductions[i]);
}
/* calculate mid point for partitioning */
size_t mid = counter_left[0];
for (size_t i=1; i<numTasks; i++)
mid += counter_left[i];
const range<ssize_t> globalLeft (0,mid);
const range<ssize_t> globalRight(mid,N);
/* calculate all left and right ranges that are on the wrong global side */
size_t numMisplacedRangesLeft = 0;
size_t numMisplacedRangesRight = 0;
size_t numMisplacedItemsLeft MAYBE_UNUSED = 0;
size_t numMisplacedItemsRight MAYBE_UNUSED = 0;
for (size_t i=0; i<numTasks; i++)
{
const range<ssize_t> left_range (counter_start[i], counter_start[i] + counter_left[i]);
const range<ssize_t> right_range(counter_start[i] + counter_left[i], counter_start[i+1]);
const range<ssize_t> left_misplaced = globalLeft. intersect(right_range);
const range<ssize_t> right_misplaced = globalRight.intersect(left_range);
if (!left_misplaced.empty())
{
numMisplacedItemsLeft += left_misplaced.size();
leftMisplacedRanges[numMisplacedRangesLeft++] = left_misplaced;
}
if (!right_misplaced.empty())
{
numMisplacedItemsRight += right_misplaced.size();
rightMisplacedRanges[numMisplacedRangesRight++] = right_misplaced;
}
}
assert( numMisplacedItemsLeft == numMisplacedItemsRight );
/* if no items are misplaced we are done */
if (numMisplacedItemsLeft == 0)
return mid;
/* otherwise we copy the items to the right place in parallel */
parallel_for(numTasks,[&] (const size_t taskID) {
const size_t startID = (taskID+0)*numMisplacedItemsLeft/numTasks;
const size_t endID = (taskID+1)*numMisplacedItemsLeft/numTasks;
swapItemsInMisplacedRanges(numMisplacedRangesLeft,numMisplacedRangesRight,startID,endID);
});
return mid;
}
};
template<typename T, typename V, typename Vi, typename IsLeft, typename Reduction_T, typename Reduction_V>
__noinline size_t parallel_partitioning(T* array,
const size_t begin,
const size_t end,
const Vi &identity,
V &leftReduction,
V &rightReduction,
const IsLeft& is_left,
const Reduction_T& reduction_t,
const Reduction_V& reduction_v,
size_t BLOCK_SIZE = 128)
{
/* fall back to single threaded partitioning for small N */
if (unlikely(end-begin < BLOCK_SIZE))
return serial_partitioning(array,begin,end,leftReduction,rightReduction,is_left,reduction_t);
/* otherwise use parallel code */
else {
typedef parallel_partition_task<T,V,Vi,IsLeft,Reduction_T,Reduction_V> partition_task;
std::unique_ptr<partition_task> p(new partition_task(&array[begin],end-begin,identity,is_left,reduction_t,reduction_v,BLOCK_SIZE));
return begin+p->partition(leftReduction,rightReduction);
}
}
template<typename T, typename V, typename Vi, typename IsLeft, typename Reduction_T, typename Reduction_V>
__noinline size_t parallel_partitioning(T* array,
const size_t begin,
const size_t end,
const Vi &identity,
V &leftReduction,
V &rightReduction,
const IsLeft& is_left,
const Reduction_T& reduction_t,
const Reduction_V& reduction_v,
size_t BLOCK_SIZE,
size_t PARALLEL_THRESHOLD)
{
/* fall back to single threaded partitioning for small N */
if (unlikely(end-begin < PARALLEL_THRESHOLD))
return serial_partitioning(array,begin,end,leftReduction,rightReduction,is_left,reduction_t);
/* otherwise use parallel code */
else {
typedef parallel_partition_task<T,V,Vi,IsLeft,Reduction_T,Reduction_V> partition_task;
std::unique_ptr<partition_task> p(new partition_task(&array[begin],end-begin,identity,is_left,reduction_t,reduction_v,BLOCK_SIZE));
return begin+p->partition(leftReduction,rightReduction);
}
}
template<typename T, typename IsLeft>
inline size_t parallel_partitioning(T* array,
const size_t begin,
const size_t end,
const IsLeft& is_left,
size_t BLOCK_SIZE = 128)
{
size_t leftReduction = 0;
size_t rightReduction = 0;
return parallel_partitioning(
array,begin,end,0,leftReduction,rightReduction,is_left,
[] (size_t& t,const T& ref) { },
[] (size_t& t0,size_t& t1) { },
BLOCK_SIZE);
}
}
|