1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
namespace embree
{
namespace isa
{
struct Cone
{
const Vec3fa p0; //!< start position of cone
const Vec3fa p1; //!< end position of cone
const float r0; //!< start radius of cone
const float r1; //!< end radius of cone
__forceinline Cone(const Vec3fa& p0, const float r0, const Vec3fa& p1, const float r1)
: p0(p0), p1(p1), r0(r0), r1(r1) {}
__forceinline bool intersect(const Vec3fa& org, const Vec3fa& dir,
BBox1f& t_o,
float& u0_o, Vec3fa& Ng0_o,
float& u1_o, Vec3fa& Ng1_o) const
{
/* calculate quadratic equation to solve */
const Vec3fa v0 = p0-org;
const Vec3fa v1 = p1-org;
const float rl = rcp_length(v1-v0);
const Vec3fa P0 = v0, dP = (v1-v0)*rl;
const float dr = (r1-r0)*rl;
const Vec3fa O = -P0, dO = dir;
const float dOdO = dot(dO,dO);
const float OdO = dot(dO,O);
const float OO = dot(O,O);
const float dOz = dot(dP,dO);
const float Oz = dot(dP,O);
const float R = r0 + Oz*dr;
const float A = dOdO - sqr(dOz) * (1.0f+sqr(dr));
const float B = 2.0f * (OdO - dOz*(Oz + R*dr));
const float C = OO - (sqr(Oz) + sqr(R));
/* we miss the cone if determinant is smaller than zero */
const float D = B*B - 4.0f*A*C;
if (D < 0.0f) return false;
/* special case for rays that are "parallel" to the cone */
const float eps = float(1<<8)*float(ulp)*max(abs(dOdO),abs(sqr(dOz)));
if (unlikely(abs(A) < eps))
{
/* cylinder case */
if (abs(dr) < 16.0f*float(ulp)) {
if (C <= 0.0f) { t_o = BBox1f(neg_inf,pos_inf); return true; }
else { t_o = BBox1f(pos_inf,neg_inf); return false; }
}
/* cone case */
else
{
/* if we hit the negative cone there cannot be a hit */
const float t = -C/B;
const float z0 = Oz+t*dOz;
const float z0r = r0+z0*dr;
if (z0r < 0.0f) return false;
/* test if we start inside or outside the cone */
if (dOz*dr > 0.0f) t_o = BBox1f(t,pos_inf);
else t_o = BBox1f(neg_inf,t);
}
}
/* standard case for "non-parallel" rays */
else
{
const float Q = sqrt(D);
const float rcp_2A = rcp(2.0f*A);
t_o.lower = (-B-Q)*rcp_2A;
t_o.upper = (-B+Q)*rcp_2A;
/* standard case where both hits are on same cone */
if (likely(A > 0.0f)) {
const float z0 = Oz+t_o.lower*dOz;
const float z0r = r0+z0*dr;
if (z0r < 0.0f) return false;
}
/* special case where the hits are on the positive and negative cone */
else
{
/* depending on the ray direction and the open direction
* of the cone we have a hit from inside or outside the
* cone */
if (dOz*dr > 0) t_o.upper = pos_inf;
else t_o.lower = neg_inf;
}
}
/* calculates u and Ng for near hit */
{
u0_o = (Oz+t_o.lower*dOz)*rl;
const Vec3fa Pr = t_o.lower*dir;
const Vec3fa Pl = v0 + u0_o*(v1-v0);
const Vec3fa R = normalize(Pr-Pl);
const Vec3fa U = (p1-p0)+(r1-r0)*R;
const Vec3fa V = cross(p1-p0,R);
Ng0_o = cross(V,U);
}
/* calculates u and Ng for far hit */
{
u1_o = (Oz+t_o.upper*dOz)*rl;
const Vec3fa Pr = t_o.upper*dir;
const Vec3fa Pl = v0 + u1_o*(v1-v0);
const Vec3fa R = normalize(Pr-Pl);
const Vec3fa U = (p1-p0)+(r1-r0)*R;
const Vec3fa V = cross(p1-p0,R);
Ng1_o = cross(V,U);
}
return true;
}
__forceinline bool intersect(const Vec3fa& org, const Vec3fa& dir, BBox1f& t_o) const
{
float u0_o; Vec3fa Ng0_o; float u1_o; Vec3fa Ng1_o;
return intersect(org,dir,t_o,u0_o,Ng0_o,u1_o,Ng1_o);
}
static bool verify(const size_t id, const Cone& cone, const Ray& ray, bool shouldhit, const float t0, const float t1)
{
float eps = 0.001f;
BBox1f t; bool hit;
hit = cone.intersect(ray.org,ray.dir,t);
bool failed = hit != shouldhit;
if (shouldhit) failed |= std::isinf(t0) ? t0 != t.lower : (t0 == -1E6) ? t.lower > -1E6f : abs(t0-t.lower) > eps;
if (shouldhit) failed |= std::isinf(t1) ? t1 != t.upper : (t1 == +1E6) ? t.upper < +1E6f : abs(t1-t.upper) > eps;
if (!failed) return true;
embree_cout << "Cone test " << id << " failed: cone = " << cone << ", ray = " << ray << ", hit = " << hit << ", t = " << t << embree_endl;
return false;
}
/* verify cone class */
static bool verify()
{
bool passed = true;
const Cone cone0(Vec3fa(0.0f,0.0f,0.0f),0.0f,Vec3fa(1.0f,0.0f,0.0f),1.0f);
passed &= verify(0,cone0,Ray(Vec3fa(-2.0f,1.0f,0.0f),Vec3fa(+1.0f,+0.0f,+0.0f),0.0f,float(inf)),true,3.0f,pos_inf);
passed &= verify(1,cone0,Ray(Vec3fa(+2.0f,1.0f,0.0f),Vec3fa(-1.0f,+0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,1.0f);
passed &= verify(2,cone0,Ray(Vec3fa(-1.0f,0.0f,2.0f),Vec3fa(+0.0f,+0.0f,-1.0f),0.0f,float(inf)),false,0.0f,0.0f);
passed &= verify(3,cone0,Ray(Vec3fa(+1.0f,0.0f,2.0f),Vec3fa(+0.0f,+0.0f,-1.0f),0.0f,float(inf)),true,1.0f,3.0f);
passed &= verify(4,cone0,Ray(Vec3fa(-1.0f,0.0f,0.0f),Vec3fa(+1.0f,+0.0f,+0.0f),0.0f,float(inf)),true,1.0f,pos_inf);
passed &= verify(5,cone0,Ray(Vec3fa(+1.0f,0.0f,0.0f),Vec3fa(-1.0f,+0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,1.0f);
passed &= verify(6,cone0,Ray(Vec3fa(+0.0f,0.0f,1.0f),Vec3fa(+0.0f,+0.0f,-1.0f),0.0f,float(inf)),true,1.0f,1.0f);
passed &= verify(7,cone0,Ray(Vec3fa(+0.0f,1.0f,0.0f),Vec3fa(-1.0f,-1.0f,+0.0f),0.0f,float(inf)),false,0.0f,0.0f);
passed &= verify(8,cone0,Ray(Vec3fa(+0.0f,1.0f,0.0f),Vec3fa(+1.0f,-1.0f,+0.0f),0.0f,float(inf)),true,0.5f,+1E6);
passed &= verify(9,cone0,Ray(Vec3fa(+0.0f,1.0f,0.0f),Vec3fa(-1.0f,+1.0f,+0.0f),0.0f,float(inf)),true,-1E6,-0.5f);
const Cone cone1(Vec3fa(0.0f,0.0f,0.0f),1.0f,Vec3fa(1.0f,0.0f,0.0f),0.0f);
passed &= verify(10,cone1,Ray(Vec3fa(-2.0f,1.0f,0.0f),Vec3fa(+1.0f,+0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,2.0f);
passed &= verify(11,cone1,Ray(Vec3fa(-1.0f,0.0f,2.0f),Vec3fa(+0.0f,+0.0f,-1.0f),0.0f,float(inf)),true,0.0f,4.0f);
const Cone cylinder(Vec3fa(0.0f,0.0f,0.0f),1.0f,Vec3fa(1.0f,0.0f,0.0f),1.0f);
passed &= verify(12,cylinder,Ray(Vec3fa(-2.0f,1.0f,0.0f),Vec3fa( 0.0f,-1.0f,+0.0f),0.0f,float(inf)),true,0.0f,2.0f);
passed &= verify(13,cylinder,Ray(Vec3fa(+2.0f,1.0f,0.0f),Vec3fa( 0.0f,-1.0f,+0.0f),0.0f,float(inf)),true,0.0f,2.0f);
passed &= verify(14,cylinder,Ray(Vec3fa(+2.0f,1.0f,2.0f),Vec3fa( 0.0f,-1.0f,+0.0f),0.0f,float(inf)),false,0.0f,0.0f);
passed &= verify(15,cylinder,Ray(Vec3fa(+0.0f,0.0f,0.0f),Vec3fa( 1.0f, 0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,pos_inf);
passed &= verify(16,cylinder,Ray(Vec3fa(+0.0f,0.0f,0.0f),Vec3fa(-1.0f, 0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,pos_inf);
passed &= verify(17,cylinder,Ray(Vec3fa(+0.0f,2.0f,0.0f),Vec3fa( 1.0f, 0.0f,+0.0f),0.0f,float(inf)),false,pos_inf,neg_inf);
passed &= verify(18,cylinder,Ray(Vec3fa(+0.0f,2.0f,0.0f),Vec3fa(-1.0f, 0.0f,+0.0f),0.0f,float(inf)),false,pos_inf,neg_inf);
return passed;
}
/*! output operator */
friend __forceinline embree_ostream operator<<(embree_ostream cout, const Cone& c) {
return cout << "Cone { p0 = " << c.p0 << ", r0 = " << c.r0 << ", p1 = " << c.p1 << ", r1 = " << c.r1 << "}";
}
};
template<int N>
struct ConeN
{
typedef Vec3<vfloat<N>> Vec3vfN;
const Vec3vfN p0; //!< start position of cone
const Vec3vfN p1; //!< end position of cone
const vfloat<N> r0; //!< start radius of cone
const vfloat<N> r1; //!< end radius of cone
__forceinline ConeN(const Vec3vfN& p0, const vfloat<N>& r0, const Vec3vfN& p1, const vfloat<N>& r1)
: p0(p0), p1(p1), r0(r0), r1(r1) {}
__forceinline Cone operator[] (const size_t i) const
{
assert(i<N);
return Cone(Vec3fa(p0.x[i],p0.y[i],p0.z[i]),r0[i],Vec3fa(p1.x[i],p1.y[i],p1.z[i]),r1[i]);
}
__forceinline vbool<N> intersect(const Vec3fa& org, const Vec3fa& dir,
BBox<vfloat<N>>& t_o,
vfloat<N>& u0_o, Vec3vfN& Ng0_o,
vfloat<N>& u1_o, Vec3vfN& Ng1_o) const
{
/* calculate quadratic equation to solve */
const Vec3vfN v0 = p0-Vec3vfN(org);
const Vec3vfN v1 = p1-Vec3vfN(org);
const vfloat<N> rl = rcp_length(v1-v0);
const Vec3vfN P0 = v0, dP = (v1-v0)*rl;
const vfloat<N> dr = (r1-r0)*rl;
const Vec3vfN O = -P0, dO = dir;
const vfloat<N> dOdO = dot(dO,dO);
const vfloat<N> OdO = dot(dO,O);
const vfloat<N> OO = dot(O,O);
const vfloat<N> dOz = dot(dP,dO);
const vfloat<N> Oz = dot(dP,O);
const vfloat<N> R = r0 + Oz*dr;
const vfloat<N> A = dOdO - sqr(dOz) * (vfloat<N>(1.0f)+sqr(dr));
const vfloat<N> B = 2.0f * (OdO - dOz*(Oz + R*dr));
const vfloat<N> C = OO - (sqr(Oz) + sqr(R));
/* we miss the cone if determinant is smaller than zero */
const vfloat<N> D = B*B - 4.0f*A*C;
vbool<N> valid = D >= 0.0f;
if (none(valid)) return valid;
/* special case for rays that are "parallel" to the cone */
const vfloat<N> eps = float(1<<8)*float(ulp)*max(abs(dOdO),abs(sqr(dOz)));
const vbool<N> validt = valid & (abs(A) < eps);
const vbool<N> validf = valid & !(abs(A) < eps);
if (unlikely(any(validt)))
{
const vboolx validtt = validt & (abs(dr) < 16.0f*float(ulp));
const vboolx validtf = validt & (abs(dr) >= 16.0f*float(ulp));
/* cylinder case */
if (unlikely(any(validtt)))
{
t_o.lower = select(validtt, select(C <= 0.0f, vfloat<N>(neg_inf), vfloat<N>(pos_inf)), t_o.lower);
t_o.upper = select(validtt, select(C <= 0.0f, vfloat<N>(pos_inf), vfloat<N>(neg_inf)), t_o.upper);
valid &= !validtt | C <= 0.0f;
}
/* cone case */
if (any(validtf))
{
/* if we hit the negative cone there cannot be a hit */
const vfloat<N> t = -C/B;
const vfloat<N> z0 = Oz+t*dOz;
const vfloat<N> z0r = r0+z0*dr;
valid &= !validtf | z0r >= 0.0f;
/* test if we start inside or outside the cone */
t_o.lower = select(validtf, select(dOz*dr > 0.0f, t, vfloat<N>(neg_inf)), t_o.lower);
t_o.upper = select(validtf, select(dOz*dr > 0.0f, vfloat<N>(pos_inf), t), t_o.upper);
}
}
/* standard case for "non-parallel" rays */
if (likely(any(validf)))
{
const vfloat<N> Q = sqrt(D);
const vfloat<N> rcp_2A = 0.5f*rcp(A);
t_o.lower = select(validf, (-B-Q)*rcp_2A, t_o.lower);
t_o.upper = select(validf, (-B+Q)*rcp_2A, t_o.upper);
/* standard case where both hits are on same cone */
const vbool<N> validft = validf & A>0.0f;
const vbool<N> validff = validf & !(A>0.0f);
if (any(validft)) {
const vfloat<N> z0 = Oz+t_o.lower*dOz;
const vfloat<N> z0r = r0+z0*dr;
valid &= !validft | z0r >= 0.0f;
}
/* special case where the hits are on the positive and negative cone */
if (any(validff)) {
/* depending on the ray direction and the open direction
* of the cone we have a hit from inside or outside the
* cone */
t_o.lower = select(validff, select(dOz*dr > 0.0f, t_o.lower, float(neg_inf)), t_o.lower);
t_o.upper = select(validff, select(dOz*dr > 0.0f, float(pos_inf), t_o.upper), t_o.upper);
}
}
/* calculates u and Ng for near hit */
{
u0_o = (Oz+t_o.lower*dOz)*rl;
const Vec3vfN Pr = t_o.lower*Vec3vfN(dir);
const Vec3vfN Pl = v0 + u0_o*(v1-v0);
const Vec3vfN R = normalize(Pr-Pl);
const Vec3vfN U = (p1-p0)+(r1-r0)*R;
const Vec3vfN V = cross(p1-p0,R);
Ng0_o = cross(V,U);
}
/* calculates u and Ng for far hit */
{
u1_o = (Oz+t_o.upper*dOz)*rl;
const Vec3vfN Pr = t_o.lower*Vec3vfN(dir);
const Vec3vfN Pl = v0 + u1_o*(v1-v0);
const Vec3vfN R = normalize(Pr-Pl);
const Vec3vfN U = (p1-p0)+(r1-r0)*R;
const Vec3vfN V = cross(p1-p0,R);
Ng1_o = cross(V,U);
}
return valid;
}
__forceinline vbool<N> intersect(const Vec3fa& org, const Vec3fa& dir, BBox<vfloat<N>>& t_o) const
{
vfloat<N> u0_o; Vec3vfN Ng0_o; vfloat<N> u1_o; Vec3vfN Ng1_o;
return intersect(org,dir,t_o,u0_o,Ng0_o,u1_o,Ng1_o);
}
};
}
}
|