1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
#include "curve_intersector_precalculations.h"
#include "curve_intersector_sweep.h"
#include "../subdiv/linear_bezier_patch.h"
#define DBG(x)
namespace embree
{
namespace isa
{
template<typename Ray, typename Epilog, int N = VSIZEX-1, int V = VSIZEX>
struct TensorLinearCubicBezierSurfaceIntersector
{
const LinearSpace3fa& ray_space;
Ray& ray;
TensorLinearCubicBezierSurface3fa curve3d;
TensorLinearCubicBezierSurface2fa curve2d;
float eps;
const Epilog& epilog;
bool isHit;
__forceinline TensorLinearCubicBezierSurfaceIntersector (const LinearSpace3fa& ray_space, Ray& ray, const TensorLinearCubicBezierSurface3fa& curve3d, const Epilog& epilog)
: ray_space(ray_space), ray(ray), curve3d(curve3d), epilog(epilog), isHit(false)
{
const TensorLinearCubicBezierSurface3fa curve3dray = curve3d.xfm(ray_space,ray.org);
curve2d = TensorLinearCubicBezierSurface2fa(CubicBezierCurve2fa(curve3dray.L),CubicBezierCurve2fa(curve3dray.R));
const BBox2fa b2 = curve2d.bounds();
eps = 8.0f*float(ulp)*reduce_max(max(abs(b2.lower),abs(b2.upper)));
}
__forceinline Interval1f solve_linear(const float u0, const float u1, const float& p0, const float& p1)
{
if (p1 == p0) {
if (p0 == 0.0f) return Interval1f(u0,u1);
else return Interval1f(empty);
}
const float t = -p0/(p1-p0);
const float tt = lerp(u0,u1,t);
return Interval1f(tt);
}
__forceinline void solve_linear(const float u0, const float u1, const Interval1f& p0, const Interval1f& p1, Interval1f& u)
{
if (sign(p0.lower) != sign(p0.upper)) u.extend(u0);
if (sign(p0.lower) != sign(p1.lower)) u.extend(solve_linear(u0,u1,p0.lower,p1.lower));
if (sign(p0.upper) != sign(p1.upper)) u.extend(solve_linear(u0,u1,p0.upper,p1.upper));
if (sign(p1.lower) != sign(p1.upper)) u.extend(u1);
}
__forceinline Interval1f bezier_clipping(const CubicBezierCurve<Interval1f>& curve)
{
Interval1f u = empty;
solve_linear(0.0f/3.0f,1.0f/3.0f,curve.v0,curve.v1,u);
solve_linear(0.0f/3.0f,2.0f/3.0f,curve.v0,curve.v2,u);
solve_linear(0.0f/3.0f,3.0f/3.0f,curve.v0,curve.v3,u);
solve_linear(1.0f/3.0f,2.0f/3.0f,curve.v1,curve.v2,u);
solve_linear(1.0f/3.0f,3.0f/3.0f,curve.v1,curve.v3,u);
solve_linear(2.0f/3.0f,3.0f/3.0f,curve.v2,curve.v3,u);
return intersect(u,Interval1f(0.0f,1.0f));
}
__forceinline Interval1f bezier_clipping(const LinearBezierCurve<Interval1f>& curve)
{
Interval1f v = empty;
solve_linear(0.0f,1.0f,curve.v0,curve.v1,v);
return intersect(v,Interval1f(0.0f,1.0f));
}
__forceinline void solve_bezier_clipping(BBox1f cu, BBox1f cv, const TensorLinearCubicBezierSurface2fa& curve2)
{
BBox2fa bounds = curve2.bounds();
if (bounds.upper.x < 0.0f) return;
if (bounds.upper.y < 0.0f) return;
if (bounds.lower.x > 0.0f) return;
if (bounds.lower.y > 0.0f) return;
if (max(cu.size(),cv.size()) < 1E-4f)
{
const float u = cu.center();
const float v = cv.center();
TensorLinearCubicBezierSurface1f curve_z = curve3d.xfm(ray_space.row2(),ray.org);
const float t = curve_z.eval(u,v);
if (ray.tnear() <= t && t <= ray.tfar) {
const Vec3fa Ng = cross(curve3d.eval_du(u,v),curve3d.eval_dv(u,v));
BezierCurveHit hit(t,u,v,Ng);
isHit |= epilog(hit);
}
return;
}
const Vec2fa dv = curve2.axis_v();
const TensorLinearCubicBezierSurface1f curve1v = curve2.xfm(dv);
LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u();
if (!curve0v.hasRoot()) return;
const Interval1f v = bezier_clipping(curve0v);
if (isEmpty(v)) return;
TensorLinearCubicBezierSurface2fa curve2a = curve2.clip_v(v);
cv = BBox1f(lerp(cv.lower,cv.upper,v.lower),lerp(cv.lower,cv.upper,v.upper));
const Vec2fa du = curve2.axis_u();
const TensorLinearCubicBezierSurface1f curve1u = curve2a.xfm(du);
CubicBezierCurve<Interval1f> curve0u = curve1u.reduce_v();
int roots = curve0u.maxRoots();
if (roots == 0) return;
if (roots == 1)
{
const Interval1f u = bezier_clipping(curve0u);
if (isEmpty(u)) return;
TensorLinearCubicBezierSurface2fa curve2b = curve2a.clip_u(u);
cu = BBox1f(lerp(cu.lower,cu.upper,u.lower),lerp(cu.lower,cu.upper,u.upper));
solve_bezier_clipping(cu,cv,curve2b);
return;
}
TensorLinearCubicBezierSurface2fa curve2l, curve2r;
curve2a.split_u(curve2l,curve2r);
solve_bezier_clipping(BBox1f(cu.lower,cu.center()),cv,curve2l);
solve_bezier_clipping(BBox1f(cu.center(),cu.upper),cv,curve2r);
}
__forceinline bool solve_bezier_clipping()
{
solve_bezier_clipping(BBox1f(0.0f,1.0f),BBox1f(0.0f,1.0f),curve2d);
return isHit;
}
__forceinline void solve_newton_raphson(BBox1f cu, BBox1f cv)
{
Vec2fa uv(cu.center(),cv.center());
const Vec2fa dfdu = curve2d.eval_du(uv.x,uv.y);
const Vec2fa dfdv = curve2d.eval_dv(uv.x,uv.y);
const LinearSpace2fa rcp_J = rcp(LinearSpace2fa(dfdu,dfdv));
solve_newton_raphson_loop(cu,cv,uv,dfdu,dfdv,rcp_J);
}
__forceinline void solve_newton_raphson_loop(BBox1f cu, BBox1f cv, const Vec2fa& uv_in, const Vec2fa& dfdu, const Vec2fa& dfdv, const LinearSpace2fa& rcp_J)
{
Vec2fa uv = uv_in;
for (size_t i=0; i<200; i++)
{
const Vec2fa f = curve2d.eval(uv.x,uv.y);
const Vec2fa duv = rcp_J*f;
uv -= duv;
if (max(abs(f.x),abs(f.y)) < eps)
{
const float u = uv.x;
const float v = uv.y;
if (!(u >= 0.0f && u <= 1.0f)) return; // rejects NaNs
if (!(v >= 0.0f && v <= 1.0f)) return; // rejects NaNs
const TensorLinearCubicBezierSurface1f curve_z = curve3d.xfm(ray_space.row2(),ray.org);
const float t = curve_z.eval(u,v);
if (!(ray.tnear() <= t && t <= ray.tfar)) return; // rejects NaNs
const Vec3fa Ng = cross(curve3d.eval_du(u,v),curve3d.eval_dv(u,v));
BezierCurveHit hit(t,u,v,Ng);
isHit |= epilog(hit);
return;
}
}
}
__forceinline bool clip_v(BBox1f& cu, BBox1f& cv)
{
const Vec2fa dv = curve2d.eval_dv(cu.lower,cv.lower);
const TensorLinearCubicBezierSurface1f curve1v = curve2d.xfm(dv).clip(cu,cv);
LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u();
if (!curve0v.hasRoot()) return false;
Interval1f v = bezier_clipping(curve0v);
if (isEmpty(v)) return false;
v = intersect(v + Interval1f(-0.1f,+0.1f),Interval1f(0.0f,1.0f));
cv = BBox1f(lerp(cv.lower,cv.upper,v.lower),lerp(cv.lower,cv.upper,v.upper));
return true;
}
__forceinline bool solve_krawczyk(bool very_small, BBox1f& cu, BBox1f& cv)
{
/* perform bezier clipping in v-direction to get tight v-bounds */
TensorLinearCubicBezierSurface2fa curve2 = curve2d.clip(cu,cv);
const Vec2fa dv = curve2.axis_v();
const TensorLinearCubicBezierSurface1f curve1v = curve2.xfm(dv);
LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u();
if (unlikely(!curve0v.hasRoot())) return true;
Interval1f v = bezier_clipping(curve0v);
if (unlikely(isEmpty(v))) return true;
v = intersect(v + Interval1f(-0.1f,+0.1f),Interval1f(0.0f,1.0f));
curve2 = curve2.clip_v(v);
cv = BBox1f(lerp(cv.lower,cv.upper,v.lower),lerp(cv.lower,cv.upper,v.upper));
/* perform one newton raphson iteration */
Vec2fa c(cu.center(),cv.center());
Vec2fa f,dfdu,dfdv; curve2d.eval(c.x,c.y,f,dfdu,dfdv);
const LinearSpace2fa rcp_J = rcp(LinearSpace2fa(dfdu,dfdv));
const Vec2fa c1 = c - rcp_J*f;
/* calculate bounds of derivatives */
const BBox2fa bounds_du = (1.0f/cu.size())*curve2.derivative_u().bounds();
const BBox2fa bounds_dv = (1.0f/cv.size())*curve2.derivative_v().bounds();
/* calculate krawczyk test */
LinearSpace2<Vec2<Interval1f>> I(Interval1f(1.0f), Interval1f(0.0f),
Interval1f(0.0f), Interval1f(1.0f));
LinearSpace2<Vec2<Interval1f>> G(Interval1f(bounds_du.lower.x,bounds_du.upper.x), Interval1f(bounds_dv.lower.x,bounds_dv.upper.x),
Interval1f(bounds_du.lower.y,bounds_du.upper.y), Interval1f(bounds_dv.lower.y,bounds_dv.upper.y));
const LinearSpace2<Vec2f> rcp_J2(rcp_J);
const LinearSpace2<Vec2<Interval1f>> rcp_Ji(rcp_J2);
const Vec2<Interval1f> x(cu,cv);
const Vec2<Interval1f> K = Vec2<Interval1f>(Vec2f(c1)) + (I - rcp_Ji*G)*(x-Vec2<Interval1f>(Vec2f(c)));
/* test if there is no solution */
const Vec2<Interval1f> KK = intersect(K,x);
if (unlikely(isEmpty(KK.x) || isEmpty(KK.y))) return true;
/* exit if convergence cannot get proven, but terminate if we are very small */
if (unlikely(!subset(K,x) && !very_small)) return false;
/* solve using newton raphson iteration of convergence is guaranteed */
solve_newton_raphson_loop(cu,cv,c1,dfdu,dfdv,rcp_J);
return true;
}
__forceinline void solve_newton_raphson_no_recursion(BBox1f cu, BBox1f cv)
{
if (!clip_v(cu,cv)) return;
return solve_newton_raphson(cu,cv);
}
__forceinline void solve_newton_raphson_recursion(BBox1f cu, BBox1f cv)
{
unsigned int sptr = 0;
const unsigned int stack_size = 4;
unsigned int mask_stack[stack_size];
BBox1f cu_stack[stack_size];
BBox1f cv_stack[stack_size];
goto entry;
/* terminate if stack is empty */
while (sptr)
{
/* pop from stack */
{
sptr--;
size_t mask = mask_stack[sptr];
cu = cu_stack[sptr];
cv = cv_stack[sptr];
const size_t i = bscf(mask);
mask_stack[sptr] = mask;
if (mask) sptr++; // there are still items on the stack
/* process next element recurse into each hit curve segment */
const float u0 = float(i+0)*(1.0f/(N));
const float u1 = float(i+1)*(1.0f/(N));
const BBox1f cui(lerp(cu.lower,cu.upper,u0),lerp(cu.lower,cu.upper,u1));
cu = cui;
}
#if 0
solve_newton_raphson_no_recursion(cu,cv);
continue;
#else
/* we assume convergence for small u ranges and verify using krawczyk */
if (cu.size() < 1.0f/6.0f) {
const bool very_small = cu.size() < 0.001f || sptr >= stack_size;
if (solve_krawczyk(very_small,cu,cv)) {
continue;
}
}
#endif
entry:
/* split the curve into N segments in u-direction */
unsigned int mask = 0;
for (int i=0; i<N;)
{
int i0 = i;
vbool<V> valid = true;
TensorLinearCubicBezierSurface<Vec2vf<V>> subcurves = curve2d.clip_v(cv).template vsplit_u<V>(valid,cu,i,N);
/* slabs test in u-direction */
Vec2vf<V> ndv = cross(subcurves.axis_v());
BBox<vfloat<V>> boundsv = subcurves.template vxfm<V>(ndv).bounds();
valid &= boundsv.lower <= eps;
valid &= boundsv.upper >= -eps;
if (none(valid)) continue;
/* slabs test in v-direction */
Vec2vf<V> ndu = cross(subcurves.axis_u());
BBox<vfloat<V>> boundsu = subcurves.template vxfm<V>(ndu).bounds();
valid &= boundsu.lower <= eps;
valid &= boundsu.upper >= -eps;
if (none(valid)) continue;
mask |= movemask(valid) << i0;
}
if (!mask) continue;
/* push valid segments to stack */
assert(sptr < stack_size);
mask_stack [sptr] = mask;
cu_stack [sptr] = cu;
cv_stack [sptr] = cv;
sptr++;
}
}
__forceinline bool solve_newton_raphson_main()
{
BBox1f vu(0.0f,1.0f);
BBox1f vv(0.0f,1.0f);
solve_newton_raphson_recursion(vu,vv);
return isHit;
}
};
template<template<typename Ty> class SourceCurve, int N = VSIZEX-1, int V = VSIZEX>
struct OrientedCurve1Intersector1
{
//template<typename Ty> using Curve = SourceCurve<Ty>;
typedef SourceCurve<Vec3ff> SourceCurve3ff;
typedef SourceCurve<Vec3fa> SourceCurve3fa;
__forceinline OrientedCurve1Intersector1() {}
__forceinline OrientedCurve1Intersector1(const Ray& ray, const void* ptr) {}
template<typename Ray, typename Epilog>
__forceinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
RayQueryContext* context,
const CurveGeometry* geom, const unsigned int primID,
const Vec3ff& v0i, const Vec3ff& v1i, const Vec3ff& v2i, const Vec3ff& v3i,
const Vec3fa& n0i, const Vec3fa& n1i, const Vec3fa& n2i, const Vec3fa& n3i,
const Epilog& epilog) const
{
STAT3(normal.trav_prims,1,1,1);
SourceCurve3ff ccurve(v0i,v1i,v2i,v3i);
SourceCurve3fa ncurve(n0i,n1i,n2i,n3i);
ccurve = enlargeRadiusToMinWidth(context,geom,ray.org,ccurve);
TensorLinearCubicBezierSurface3fa curve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve);
//return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_bezier_clipping();
return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog,N,V>(pre.ray_space,ray,curve,epilog).solve_newton_raphson_main();
}
template<typename Ray, typename Epilog>
__forceinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
RayQueryContext* context,
const CurveGeometry* geom, const unsigned int primID,
const TensorLinearCubicBezierSurface3fa& curve, const Epilog& epilog) const
{
STAT3(normal.trav_prims,1,1,1);
//return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_bezier_clipping();
return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog,N,V>(pre.ray_space,ray,curve,epilog).solve_newton_raphson_main();
}
};
template<template<typename Ty> class SourceCurve, int K>
struct OrientedCurve1IntersectorK
{
//template<typename Ty> using Curve = SourceCurve<Ty>;
typedef SourceCurve<Vec3ff> SourceCurve3ff;
typedef SourceCurve<Vec3fa> SourceCurve3fa;
struct Ray1
{
__forceinline Ray1(RayK<K>& ray, size_t k)
: org(ray.org.x[k],ray.org.y[k],ray.org.z[k]), dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]), _tnear(ray.tnear()[k]), tfar(ray.tfar[k]) {}
Vec3fa org;
Vec3fa dir;
float _tnear;
float& tfar;
__forceinline float& tnear() { return _tnear; }
//__forceinline float& tfar() { return _tfar; }
__forceinline const float& tnear() const { return _tnear; }
//__forceinline const float& tfar() const { return _tfar; }
};
template<typename Epilog>
__forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k,
RayQueryContext* context,
const CurveGeometry* geom, const unsigned int primID,
const Vec3ff& v0i, const Vec3ff& v1i, const Vec3ff& v2i, const Vec3ff& v3i,
const Vec3fa& n0i, const Vec3fa& n1i, const Vec3fa& n2i, const Vec3fa& n3i,
const Epilog& epilog)
{
STAT3(normal.trav_prims,1,1,1);
Ray1 ray(vray,k);
SourceCurve3ff ccurve(v0i,v1i,v2i,v3i);
SourceCurve3fa ncurve(n0i,n1i,n2i,n3i);
ccurve = enlargeRadiusToMinWidth(context,geom,ray.org,ccurve);
TensorLinearCubicBezierSurface3fa curve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve);
//return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_bezier_clipping();
return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_newton_raphson_main();
}
template<typename Epilog>
__forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k,
RayQueryContext* context,
const CurveGeometry* geom, const unsigned int primID,
const TensorLinearCubicBezierSurface3fa& curve,
const Epilog& epilog)
{
STAT3(normal.trav_prims,1,1,1);
Ray1 ray(vray,k);
//return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_bezier_clipping();
return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_newton_raphson_main();
}
};
}
}
|