1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
#include "quad_intersector.h"
#include "curve_intersector_precalculations.h"
#define Bezier1Intersector1 RibbonCurve1Intersector1
#define Bezier1IntersectorK RibbonCurve1IntersectorK
namespace embree
{
namespace isa
{
template<typename NativeCurve3ff, int M>
struct RibbonHit
{
__forceinline RibbonHit() {}
__forceinline RibbonHit(const vbool<M>& valid, const vfloat<M>& U, const vfloat<M>& V, const vfloat<M>& T, const int i, const int N,
const NativeCurve3ff& curve3D)
: U(U), V(V), T(T), i(i), N(N), curve3D(curve3D), valid(valid) {}
__forceinline void finalize()
{
vu = (vfloat<M>(step)+U+vfloat<M>(float(i)))*(1.0f/float(N));
vv = V;
vt = T;
}
__forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); }
__forceinline float t (const size_t i) const { return vt[i]; }
__forceinline Vec3fa Ng(const size_t i) const { return curve3D.eval_du(vu[i]); }
__forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); }
__forceinline vfloat<M> t () const { return vt; }
__forceinline Vec3vf<M> Ng() const { return (Vec3vf<M>) curve3D.template veval_du<M>(vu); }
public:
vfloat<M> U;
vfloat<M> V;
vfloat<M> T;
int i, N;
NativeCurve3ff curve3D;
public:
vbool<M> valid;
vfloat<M> vu;
vfloat<M> vv;
vfloat<M> vt;
};
/* calculate squared distance of point p0 to line p1->p2 */
template<int M>
__forceinline std::pair<vfloat<M>,vfloat<M>> sqr_point_line_distance(const Vec2vf<M>& p0, const Vec2vf<M>& p1, const Vec2vf<M>& p2)
{
const vfloat<M> num = det(p2-p1,p1-p0);
const vfloat<M> den2 = dot(p2-p1,p2-p1);
return std::make_pair(num*num,den2);
}
/* performs culling against a cylinder */
template<int M>
__forceinline vbool<M> cylinder_culling_test(const Vec2vf<M>& p0, const Vec2vf<M>& p1, const Vec2vf<M>& p2, const vfloat<M>& r)
{
const std::pair<vfloat<M>,vfloat<M>> d = sqr_point_line_distance<M>(p0,p1,p2);
return d.first <= r*r*d.second;
}
template<int M = VSIZEX, typename NativeCurve3ff, typename Epilog>
__forceinline bool intersect_ribbon(const Vec3fa& ray_org, const Vec3fa& ray_dir, const float ray_tnear, const float& ray_tfar,
const LinearSpace3fa& ray_space, const float& depth_scale,
const NativeCurve3ff& curve3D, const int N,
const Epilog& epilog)
{
/* transform control points into ray space */
const NativeCurve3ff curve2D = curve3D.xfm_pr(ray_space,ray_org);
float eps = 4.0f*float(ulp)*reduce_max(max(abs(curve2D.v0),abs(curve2D.v1),abs(curve2D.v2),abs(curve2D.v3)));
int i=0;
bool ishit = false;
#if !defined(__SYCL_DEVICE_ONLY__)
{
/* evaluate the bezier curve */
vbool<M> valid = vfloat<M>(step) < vfloat<M>(float(N));
const Vec4vf<M> p0 = curve2D.template eval0<M>(0,N);
const Vec4vf<M> p1 = curve2D.template eval1<M>(0,N);
valid &= cylinder_culling_test<M>(zero,Vec2vf<M>(p0.x,p0.y),Vec2vf<M>(p1.x,p1.y),max(p0.w,p1.w));
if (any(valid))
{
Vec3vf<M> dp0dt = curve2D.template derivative0<M>(0,N);
Vec3vf<M> dp1dt = curve2D.template derivative1<M>(0,N);
dp0dt = select(reduce_max(abs(dp0dt)) < vfloat<M>(eps),Vec3vf<M>(p1-p0),dp0dt);
dp1dt = select(reduce_max(abs(dp1dt)) < vfloat<M>(eps),Vec3vf<M>(p1-p0),dp1dt);
const Vec3vf<M> n0(dp0dt.y,-dp0dt.x,0.0f);
const Vec3vf<M> n1(dp1dt.y,-dp1dt.x,0.0f);
const Vec3vf<M> nn0 = normalize(n0);
const Vec3vf<M> nn1 = normalize(n1);
const Vec3vf<M> lp0 = madd(p0.w,nn0,Vec3vf<M>(p0));
const Vec3vf<M> lp1 = madd(p1.w,nn1,Vec3vf<M>(p1));
const Vec3vf<M> up0 = nmadd(p0.w,nn0,Vec3vf<M>(p0));
const Vec3vf<M> up1 = nmadd(p1.w,nn1,Vec3vf<M>(p1));
vfloat<M> vu,vv,vt;
vbool<M> valid0 = intersect_quad_backface_culling<M>(valid,zero,Vec3fa(0,0,1),ray_tnear,ray_tfar,lp0,lp1,up1,up0,vu,vv,vt);
if (any(valid0))
{
/* ignore self intersections */
if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) {
vfloat<M> r = lerp(p0.w, p1.w, vu);
valid0 &= vt > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale;
}
if (any(valid0))
{
vv = madd(2.0f,vv,vfloat<M>(-1.0f));
RibbonHit<NativeCurve3ff,M> bhit(valid0,vu,vv,vt,0,N,curve3D);
ishit |= epilog(bhit.valid,bhit);
}
}
}
i += M;
}
if (unlikely(i < N))
#endif
{
/* process SIMD-size many segments per iteration */
for (; i<N; i+=M)
{
/* evaluate the bezier curve */
vbool<M> valid = vint<M>(i)+vint<M>(step) < vint<M>(N);
const Vec4vf<M> p0 = curve2D.template eval0<M>(i,N);
const Vec4vf<M> p1 = curve2D.template eval1<M>(i,N);
valid &= cylinder_culling_test<M>(zero,Vec2vf<M>(p0.x,p0.y),Vec2vf<M>(p1.x,p1.y),max(p0.w,p1.w));
if (none(valid)) continue;
Vec3vf<M> dp0dt = curve2D.template derivative0<M>(i,N);
Vec3vf<M> dp1dt = curve2D.template derivative1<M>(i,N);
dp0dt = select(reduce_max(abs(dp0dt)) < vfloat<M>(eps),Vec3vf<M>(p1-p0),dp0dt);
dp1dt = select(reduce_max(abs(dp1dt)) < vfloat<M>(eps),Vec3vf<M>(p1-p0),dp1dt);
const Vec3vf<M> n0(dp0dt.y,-dp0dt.x,0.0f);
const Vec3vf<M> n1(dp1dt.y,-dp1dt.x,0.0f);
const Vec3vf<M> nn0 = normalize(n0);
const Vec3vf<M> nn1 = normalize(n1);
const Vec3vf<M> lp0 = madd(p0.w,nn0,Vec3vf<M>(p0));
const Vec3vf<M> lp1 = madd(p1.w,nn1,Vec3vf<M>(p1));
const Vec3vf<M> up0 = nmadd(p0.w,nn0,Vec3vf<M>(p0));
const Vec3vf<M> up1 = nmadd(p1.w,nn1,Vec3vf<M>(p1));
vfloat<M> vu,vv,vt;
vbool<M> valid0 = intersect_quad_backface_culling<M>(valid,zero,Vec3fa(0,0,1),ray_tnear,ray_tfar,lp0,lp1,up1,up0,vu,vv,vt);
if (any(valid0))
{
/* ignore self intersections */
if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) {
vfloat<M> r = lerp(p0.w, p1.w, vu);
valid0 &= vt > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale;
}
if (any(valid0))
{
vv = madd(2.0f,vv,vfloat<M>(-1.0f));
RibbonHit<NativeCurve3ff,M> bhit(valid0,vu,vv,vt,i,N,curve3D);
ishit |= epilog(bhit.valid,bhit);
}
}
}
}
return ishit;
}
template<template<typename Ty> class NativeCurve, int M = VSIZEX>
struct RibbonCurve1Intersector1
{
typedef NativeCurve<Vec3ff> NativeCurve3ff;
template<typename Ray, typename Epilog>
__forceinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
RayQueryContext* context,
const CurveGeometry* geom, const unsigned int primID,
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
const Epilog& epilog)
{
const int N = geom->tessellationRate;
NativeCurve3ff curve(v0,v1,v2,v3);
curve = enlargeRadiusToMinWidth(context,geom,ray.org,curve);
return intersect_ribbon<M,NativeCurve3ff>(ray.org,ray.dir,ray.tnear(),ray.tfar,
pre.ray_space,pre.depth_scale,
curve,N,
epilog);
}
};
template<template<typename Ty> class NativeCurve, int K, int M = VSIZEX>
struct RibbonCurve1IntersectorK
{
typedef NativeCurve<Vec3ff> NativeCurve3ff;
template<typename Epilog>
__forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& ray, size_t k,
RayQueryContext* context,
const CurveGeometry* geom, const unsigned int primID,
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
const Epilog& epilog)
{
const int N = geom->tessellationRate;
const Vec3fa ray_org(ray.org.x[k],ray.org.y[k],ray.org.z[k]);
const Vec3fa ray_dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]);
NativeCurve3ff curve(v0,v1,v2,v3);
curve = enlargeRadiusToMinWidth(context,geom,ray_org,curve);
return intersect_ribbon<M,NativeCurve3ff>(ray_org,ray_dir,ray.tnear()[k],ray.tfar[k],
pre.ray_space[k],pre.depth_scale[k],
curve,N,
epilog);
}
};
}
}
|