1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
#include "curve_intersector_precalculations.h"
/*
This file implements the intersection of a ray with a round linear
curve segment. We define the geometry of such a round linear curve
segment from point p0 with radius r0 to point p1 with radius r1
using the cone that touches spheres p0/r0 and p1/r1 tangentially
plus the sphere p1/r1. We denote the tangentially touching cone from
p0/r0 to p1/r1 with cone(p0,r0,p1,r1) and the cone plus the ending
sphere with cone_sphere(p0,r0,p1,r1).
For multiple connected round linear curve segments this construction
yield a proper shape when viewed from the outside. Using the
following CSG we can also handle the interior in most common cases:
round_linear_curve(pl,rl,p0,r0,p1,r1,pr,rr) =
cone_sphere(p0,r0,p1,r1) - cone(pl,rl,p0,r0) - cone(p1,r1,pr,rr)
Thus by subtracting the neighboring cone geometries, we cut away
parts of the center cone_sphere surface which lie inside the
combined curve. This approach works as long as geometry of the
current cone_sphere penetrates into direct neighbor segments only,
and not into segments further away.
To construct a cone that touches two spheres at p0 and p1 with r0
and r1, one has to increase the cone radius at r0 and r1 to obtain
larger radii w0 and w1, such that the infinite cone properly touches
the spheres. From the paper "Ray Tracing Generalized Tube
Primitives: Method and Applications"
(https://www.researchgate.net/publication/334378683_Ray_Tracing_Generalized_Tube_Primitives_Method_and_Applications)
one can derive the following equations for these increased
radii:
sr = 1.0f / sqrt(1-sqr(dr)/sqr(p1-p0))
w0 = sr*r0
w1 = sr*r1
Further, we want the cone to start where it touches the sphere at p0
and to end where it touches sphere at p1. Therefore, we need to
construct clipping locations y0 and y1 for the start and end of the
cone. These start and end clipping location of the cone can get
calculated as:
Y0 = - r0 * (r1-r0) / length(p1-p0)
Y1 = length(p1-p0) - r1 * (r1-r0) / length(p1-p0)
Where the cone starts a distance Y0 and ends a distance Y1 away of
point p0 along the cone center. The distance between Y1-Y0 can get
calculated as:
dY = length(p1-p0) - (r1-r0)^2 / length(p1-p0)
In the code below, Y will always be scaled by length(p1-p0) to
obtain y and you will find the terms r0*(r1-r0) and
(p1-p0)^2-(r1-r0)^2.
*/
namespace embree
{
namespace isa
{
template<int M>
struct RoundLineIntersectorHitM
{
__forceinline RoundLineIntersectorHitM() {}
__forceinline RoundLineIntersectorHitM(const vfloat<M>& u, const vfloat<M>& v, const vfloat<M>& t, const Vec3vf<M>& Ng)
: vu(u), vv(v), vt(t), vNg(Ng) {}
__forceinline void finalize() {}
__forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); }
__forceinline float t (const size_t i) const { return vt[i]; }
__forceinline Vec3fa Ng(const size_t i) const { return Vec3fa(vNg.x[i],vNg.y[i],vNg.z[i]); }
__forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); }
__forceinline vfloat<M> t () const { return vt; }
__forceinline Vec3vf<M> Ng() const { return vNg; }
public:
vfloat<M> vu;
vfloat<M> vv;
vfloat<M> vt;
Vec3vf<M> vNg;
};
namespace __roundline_internal
{
template<int M>
struct ConeGeometry
{
ConeGeometry (const Vec4vf<M>& a, const Vec4vf<M>& b)
: p0(a.xyz()), p1(b.xyz()), dP(p1-p0), dPdP(dot(dP,dP)), r0(a.w), sqr_r0(sqr(r0)), r1(b.w), dr(r1-r0), drdr(dr*dr), r0dr (r0*dr), g(dPdP - drdr) {}
/*
This function tests if a point is accepted by first cone
clipping plane.
First, we need to project the point onto the line p0->p1:
Y = (p-p0)*(p1-p0)/length(p1-p0)
This value y is the distance to the projection point from
p0. The clip distances are calculated as:
Y0 = - r0 * (r1-r0) / length(p1-p0)
Y1 = length(p1-p0) - r1 * (r1-r0) / length(p1-p0)
Thus to test if the point p is accepted by the first
clipping plane we need to test Y > Y0 and to test if it
is accepted by the second clipping plane we need to test
Y < Y1.
By multiplying the calculations with length(p1-p0) these
calculation can get simplied to:
y = (p-p0)*(p1-p0)
y0 = - r0 * (r1-r0)
y1 = (p1-p0)^2 - r1 * (r1-r0)
and the test y > y0 and y < y1.
*/
__forceinline vbool<M> isClippedByPlane (const vbool<M>& valid_i, const Vec3vf<M>& p) const
{
const Vec3vf<M> p0p = p - p0;
const vfloat<M> y = dot(p0p,dP);
const vfloat<M> cap0 = -r0dr;
const vbool<M> inside_cone = y > cap0;
return valid_i & (p0.x != vfloat<M>(inf)) & (p1.x != vfloat<M>(inf)) & inside_cone;
}
/*
This function tests whether a point lies inside the capped cone
tangential to its ending spheres.
Therefore one has to check if the point is inside the
region defined by the cone clipping planes, which is
performed similar as in the previous function.
To perform the inside cone test we need to project the
point onto the line p0->p1:
dP = p1-p0
Y = (p-p0)*dP/length(dP)
This value Y is the distance to the projection point from
p0. To obtain a parameter value u going from 0 to 1 along
the line p0->p1 we calculate:
U = Y/length(dP)
The radii to use at points p0 and p1 are:
w0 = sr * r0
w1 = sr * r1
dw = w1-w0
Using these radii and u one can directly test if the point
lies inside the cone using the formula dP*dP < wy*wy with:
wy = w0 + u*dw
py = p0 + u*dP - p
By multiplying the calculations with length(p1-p0) and
inserting the definition of w can obtain simpler equations:
y = (p-p0)*dP
ry = r0 + y/dP^2 * dr
wy = sr*ry
py = p0 + y/dP^2*dP - p
y0 = - r0 * dr
y1 = dP^2 - r1 * dr
Thus for the in-cone test we get:
py^2 < wy^2
<=> py^2 < sr^2 * ry^2
<=> py^2 * ( dP^2 - dr^2 ) < dP^2 * ry^2
This can further get simplified to:
(p0-p)^2 * (dP^2 - dr^2) - y^2 < dP^2 * r0^2 + 2.0f*r0*dr*y;
*/
__forceinline vbool<M> isInsideCappedCone (const vbool<M>& valid_i, const Vec3vf<M>& p) const
{
const Vec3vf<M> p0p = p - p0;
const vfloat<M> y = dot(p0p,dP);
const vfloat<M> cap0 = -r0dr+vfloat<M>(ulp);
const vfloat<M> cap1 = -r1*dr + dPdP;
vbool<M> inside_cone = valid_i & (p0.x != vfloat<M>(inf)) & (p1.x != vfloat<M>(inf));
inside_cone &= y > cap0; // start clipping plane
inside_cone &= y < cap1; // end clipping plane
inside_cone &= sqr(p0p)*g - sqr(y) < dPdP * sqr_r0 + 2.0f*r0dr*y; // in cone test
return inside_cone;
}
protected:
Vec3vf<M> p0;
Vec3vf<M> p1;
Vec3vf<M> dP;
vfloat<M> dPdP;
vfloat<M> r0;
vfloat<M> sqr_r0;
vfloat<M> r1;
vfloat<M> dr;
vfloat<M> drdr;
vfloat<M> r0dr;
vfloat<M> g;
};
template<int M>
struct ConeGeometryIntersector : public ConeGeometry<M>
{
using ConeGeometry<M>::p0;
using ConeGeometry<M>::p1;
using ConeGeometry<M>::dP;
using ConeGeometry<M>::dPdP;
using ConeGeometry<M>::r0;
using ConeGeometry<M>::sqr_r0;
using ConeGeometry<M>::r1;
using ConeGeometry<M>::dr;
using ConeGeometry<M>::r0dr;
using ConeGeometry<M>::g;
ConeGeometryIntersector (const Vec3vf<M>& ray_org, const Vec3vf<M>& ray_dir, const vfloat<M>& dOdO, const vfloat<M>& rcp_dOdO, const Vec4vf<M>& a, const Vec4vf<M>& b)
: ConeGeometry<M>(a,b), org(ray_org), O(ray_org-p0), dO(ray_dir), dOdO(dOdO), rcp_dOdO(rcp_dOdO), OdP(dot(dP,O)), dOdP(dot(dP,dO)), yp(OdP + r0dr) {}
/*
This function intersects a ray with a cone that touches a
start sphere p0/r0 and end sphere p1/r1.
To find this ray/cone intersections one could just
calculate radii w0 and w1 as described above and use a
standard ray/cone intersection routine with these
radii. However, it turns out that calculations can get
simplified when deriving a specialized ray/cone
intersection for this special case. We perform
calculations relative to the cone origin p0 and define:
O = ray_org - p0
dO = ray_dir
dP = p1-p0
dr = r1-r0
dw = w1-w0
For some t we can compute the potential hit point h = O + t*dO and
project it onto the cone vector dP to obtain u = (h*dP)/(dP*dP). In
case of an intersection, the squared distance from the hit point
projected onto the cone center line to the hit point should be equal
to the squared cone radius at u:
(u*dP - h)^2 = (w0 + u*dw)^2
Inserting the definition of h, u, w0, and dw into this formula, then
factoring out all terms, and sorting by t^2, t^1, and t^0 terms
yields a quadratic equation to solve.
Inserting u:
( (h*dP)*dP/dP^2 - h )^2 = ( w0 + (h*dP)*dw/dP^2 )^2
Multiplying by dP^4:
( (h*dP)*dP - h*dP^2 )^2 = ( w0*dP^2 + (h*dP)*dw )^2
Inserting w0 and dw:
( (h*dP)*dP - h*dP^2 )^2 = ( r0*dP^2 + (h*dP)*dr )^2 / (1-dr^2/dP^2)
( (h*dP)*dP - h*dP^2 )^2 *(dP^2 - dr^2) = dP^2 * ( r0*dP^2 + (h*dP)*dr )^2
Now one can insert the definition of h, factor out, and presort by t:
( ((O + t*dO)*dP)*dP - (O + t*dO)*dP^2 )^2 *(dP^2 - dr^2) = dP^2 * ( r0*dP^2 + ((O + t*dO)*dP)*dr )^2
( (O*dP)*dP-O*dP^2 + t*( (dO*dP)*dP - dO*dP^2 ) )^2 *(dP^2 - dr^2) = dP^2 * ( r0*dP^2 + (O*dP)*dr + t*(dO*dP)*dr )^2
Factoring out further and sorting by t^2, t^1 and t^0 yields:
0 = t^2 * [ ((dO*dP)*dP - dO-dP^2)^2 * (dP^2 - dr^2) - dP^2*(dO*dP)^2*dr^2 ]
+ 2*t^1 * [ ((O*dP)*dP - O*dP^2) * ((dO*dP)*dP - dO*dP^2) * (dP^2 - dr^2) - dP^2*(r0*dP^2 + (O*dP)*dr)*(dO*dP)*dr ]
+ t^0 * [ ( (O*dP)*dP - O*dP^2)^2 * (dP^2-dr^2) - dP^2*(r0*dP^2 + (O*dP)*dr)^2 ]
This can be simplified to:
0 = t^2 * [ (dP^2 - dr^2)*dO^2 - (dO*dP)^2 ]
+ 2*t^1 * [ (dP^2 - dr^2)*(O*dO) - (dO*dP)*(O*dP + r0*dr) ]
+ t^0 * [ (dP^2 - dr^2)*O^2 - (O*dP)^2 - r0^2*dP^2 - 2.0f*r0*dr*(O*dP) ]
Solving this quadratic equation yields the values for t at which the
ray intersects the cone.
*/
__forceinline bool intersectCone(vbool<M>& valid, vfloat<M>& lower, vfloat<M>& upper)
{
/* return no hit by default */
lower = pos_inf;
upper = neg_inf;
/* compute quadratic equation A*t^2 + B*t + C = 0 */
const vfloat<M> OO = dot(O,O);
const vfloat<M> OdO = dot(dO,O);
const vfloat<M> A = g * dOdO - sqr(dOdP);
const vfloat<M> B = 2.0f * (g*OdO - dOdP*yp);
const vfloat<M> C = g*OO - sqr(OdP) - sqr_r0*dPdP - 2.0f*r0dr*OdP;
/* we miss the cone if determinant is smaller than zero */
const vfloat<M> D = B*B - 4.0f*A*C;
valid &= (D >= 0.0f & g > 0.0f); // if g <= 0 then the cone is inside a sphere end
/* When rays are parallel to the cone surface, then the
* ray may be inside or outside the cone. We just assume a
* miss in that case, which is fine as rays inside the
* cone would anyway hit the ending spheres in that
* case. */
valid &= abs(A) > min_rcp_input;
if (unlikely(none(valid))) {
return false;
}
/* compute distance to front and back hit */
const vfloat<M> Q = sqrt(D);
const vfloat<M> rcp_2A = rcp(2.0f*A);
t_cone_front = (-B-Q)*rcp_2A;
y_cone_front = yp + t_cone_front*dOdP;
lower = select( (y_cone_front > -(float)ulp) & (y_cone_front <= g) & (g > 0.0f), t_cone_front, vfloat<M>(pos_inf));
#if !defined (EMBREE_BACKFACE_CULLING_CURVES)
t_cone_back = (-B+Q)*rcp_2A;
y_cone_back = yp + t_cone_back *dOdP;
upper = select( (y_cone_back > -(float)ulp) & (y_cone_back <= g) & (g > 0.0f), t_cone_back , vfloat<M>(neg_inf));
#endif
return true;
}
/*
This function intersects the ray with the end sphere at
p1. We already clip away hits that are inside the
neighboring cone segment.
*/
__forceinline void intersectEndSphere(vbool<M>& valid,
const ConeGeometry<M>& coneR,
vfloat<M>& lower, vfloat<M>& upper)
{
/* calculate front and back hit with end sphere */
const Vec3vf<M> O1 = org - p1;
const vfloat<M> O1dO = dot(O1,dO);
const vfloat<M> h2 = sqr(O1dO) - dOdO*(sqr(O1) - sqr(r1));
const vfloat<M> rhs1 = select( h2 >= 0.0f, sqrt(h2), vfloat<M>(neg_inf) );
/* clip away front hit if it is inside next cone segment */
t_sph1_front = (-O1dO - rhs1)*rcp_dOdO;
const Vec3vf<M> hit_front = org + t_sph1_front*dO;
vbool<M> valid_sph1_front = h2 >= 0.0f & yp + t_sph1_front*dOdP > g & !coneR.isClippedByPlane (valid, hit_front);
lower = select(valid_sph1_front, t_sph1_front, vfloat<M>(pos_inf));
#if !defined(EMBREE_BACKFACE_CULLING_CURVES)
/* clip away back hit if it is inside next cone segment */
t_sph1_back = (-O1dO + rhs1)*rcp_dOdO;
const Vec3vf<M> hit_back = org + t_sph1_back*dO;
vbool<M> valid_sph1_back = h2 >= 0.0f & yp + t_sph1_back*dOdP > g & !coneR.isClippedByPlane (valid, hit_back);
upper = select(valid_sph1_back, t_sph1_back, vfloat<M>(neg_inf));
#else
upper = vfloat<M>(neg_inf);
#endif
}
__forceinline void intersectBeginSphere(const vbool<M>& valid,
vfloat<M>& lower, vfloat<M>& upper)
{
/* calculate front and back hit with end sphere */
const Vec3vf<M> O1 = org - p0;
const vfloat<M> O1dO = dot(O1,dO);
const vfloat<M> h2 = sqr(O1dO) - dOdO*(sqr(O1) - sqr(r0));
const vfloat<M> rhs1 = select( h2 >= 0.0f, sqrt(h2), vfloat<M>(neg_inf) );
/* clip away front hit if it is inside next cone segment */
t_sph0_front = (-O1dO - rhs1)*rcp_dOdO;
vbool<M> valid_sph1_front = valid & h2 >= 0.0f & yp + t_sph0_front*dOdP < 0;
lower = select(valid_sph1_front, t_sph0_front, vfloat<M>(pos_inf));
#if !defined(EMBREE_BACKFACE_CULLING_CURVES)
/* clip away back hit if it is inside next cone segment */
t_sph0_back = (-O1dO + rhs1)*rcp_dOdO;
vbool<M> valid_sph1_back = valid & h2 >= 0.0f & yp + t_sph0_back*dOdP < 0;
upper = select(valid_sph1_back, t_sph0_back, vfloat<M>(neg_inf));
#else
upper = vfloat<M>(neg_inf);
#endif
}
/*
This function calculates the geometry normal of some cone hit.
For a given hit point h (relative to p0) with a cone
starting at p0 with radius w0 and ending at p1 with
radius w1 one normally calculates the geometry normal by
first calculating the parmetric u hit location along the
cone:
u = dot(h,dP)/dP^2
Using this value one can now directly calculate the
geometry normal by bending the connection vector (h-u*dP)
from hit to projected hit with some cone dependent value
dw/sqrt(dP^2) * normalize(dP):
Ng = normalize(h-u*dP) - dw/length(dP) * normalize(dP)
The length of the vector (h-u*dP) can also get calculated
by interpolating the radii as w0+u*dw which yields:
Ng = (h-u*dP)/(w0+u*dw) - dw/dP^2 * dP
Multiplying with (w0+u*dw) yield a scaled Ng':
Ng' = (h-u*dP) - (w0+u*dw)*dw/dP^2*dP
Inserting the definition of w0 and dw and refactoring
yield a further scaled Ng'':
Ng'' = (dP^2 - dr^2) (h-q) - (r0+u*dr)*dr*dP
Now inserting the definition of u gives and multiplying
with the denominator yields:
Ng''' = (dP^2-dr^2)*(dP^2*h-dot(h,dP)*dP) - (dP^2*r0+dot(h,dP)*dr)*dr*dP
Factoring out, cancelling terms, dividing by dP^2, and
factoring again yields finally:
Ng'''' = (dP^2-dr^2)*h - dP*(dot(h,dP) + r0*dr)
*/
__forceinline Vec3vf<M> Ng_cone(const vbool<M>& front_hit) const
{
#if !defined(EMBREE_BACKFACE_CULLING_CURVES)
const vfloat<M> y = select(front_hit, y_cone_front, y_cone_back);
const vfloat<M> t = select(front_hit, t_cone_front, t_cone_back);
const Vec3vf<M> h = O + t*dO;
return g*h-dP*y;
#else
const Vec3vf<M> h = O + t_cone_front*dO;
return g*h-dP*y_cone_front;
#endif
}
/* compute geometry normal of sphere hit as the difference
* vector from hit point to sphere center */
__forceinline Vec3vf<M> Ng_sphere1(const vbool<M>& front_hit) const
{
#if !defined(EMBREE_BACKFACE_CULLING_CURVES)
const vfloat<M> t_sph1 = select(front_hit, t_sph1_front, t_sph1_back);
return org+t_sph1*dO-p1;
#else
return org+t_sph1_front*dO-p1;
#endif
}
__forceinline Vec3vf<M> Ng_sphere0(const vbool<M>& front_hit) const
{
#if !defined(EMBREE_BACKFACE_CULLING_CURVES)
const vfloat<M> t_sph0 = select(front_hit, t_sph0_front, t_sph0_back);
return org+t_sph0*dO-p0;
#else
return org+t_sph0_front*dO-p0;
#endif
}
/*
This function calculates the u coordinate of a
hit. Therefore we use the hit distance y (which is zero
at the first cone clipping plane) and divide by distance
g between the clipping planes.
*/
__forceinline vfloat<M> u_cone(const vbool<M>& front_hit) const
{
#if !defined(EMBREE_BACKFACE_CULLING_CURVES)
const vfloat<M> y = select(front_hit, y_cone_front, y_cone_back);
return clamp(y*rcp(g));
#else
return clamp(y_cone_front*rcp(g));
#endif
}
private:
Vec3vf<M> org;
Vec3vf<M> O;
Vec3vf<M> dO;
vfloat<M> dOdO;
vfloat<M> rcp_dOdO;
vfloat<M> OdP;
vfloat<M> dOdP;
/* for ray/cone intersection */
private:
vfloat<M> yp;
vfloat<M> y_cone_front;
vfloat<M> t_cone_front;
#if !defined (EMBREE_BACKFACE_CULLING_CURVES)
vfloat<M> y_cone_back;
vfloat<M> t_cone_back;
#endif
/* for ray/sphere intersection */
private:
vfloat<M> t_sph1_front;
vfloat<M> t_sph0_front;
#if !defined (EMBREE_BACKFACE_CULLING_CURVES)
vfloat<M> t_sph1_back;
vfloat<M> t_sph0_back;
#endif
};
template<int M, typename Epilog, typename ray_tfar_func>
static __forceinline bool intersectConeSphere(const vbool<M>& valid_i,
const Vec3vf<M>& ray_org_in, const Vec3vf<M>& ray_dir,
const vfloat<M>& ray_tnear, const ray_tfar_func& ray_tfar,
const Vec4vf<M>& v0, const Vec4vf<M>& v1,
const Vec4vf<M>& vL, const Vec4vf<M>& vR,
const Epilog& epilog)
{
vbool<M> valid = valid_i;
/* move ray origin closer to make calculations numerically stable */
const vfloat<M> dOdO = sqr(ray_dir);
const vfloat<M> rcp_dOdO = rcp(dOdO);
const Vec3vf<M> center = vfloat<M>(0.5f)*(v0.xyz()+v1.xyz());
const vfloat<M> dt = dot(center-ray_org_in,ray_dir)*rcp_dOdO;
const Vec3vf<M> ray_org = ray_org_in + dt*ray_dir;
/* intersect with cone from v0 to v1 */
vfloat<M> t_cone_lower, t_cone_upper;
ConeGeometryIntersector<M> cone (ray_org, ray_dir, dOdO, rcp_dOdO, v0, v1);
vbool<M> validCone = valid;
cone.intersectCone(validCone, t_cone_lower, t_cone_upper);
valid &= (validCone | (cone.g <= 0.0f)); // if cone is entirely in sphere end - check sphere
if (unlikely(none(valid)))
return false;
/* cone hits inside the neighboring capped cones are inside the geometry and thus ignored */
const ConeGeometry<M> coneL (v0, vL);
const ConeGeometry<M> coneR (v1, vR);
#if !defined(EMBREE_BACKFACE_CULLING_CURVES)
const Vec3vf<M> hit_lower = ray_org + t_cone_lower*ray_dir;
const Vec3vf<M> hit_upper = ray_org + t_cone_upper*ray_dir;
t_cone_lower = select (!coneL.isInsideCappedCone (validCone, hit_lower) & !coneR.isInsideCappedCone (validCone, hit_lower), t_cone_lower, vfloat<M>(pos_inf));
t_cone_upper = select (!coneL.isInsideCappedCone (validCone, hit_upper) & !coneR.isInsideCappedCone (validCone, hit_upper), t_cone_upper, vfloat<M>(neg_inf));
#endif
/* intersect ending sphere */
vfloat<M> t_sph1_lower, t_sph1_upper;
vfloat<M> t_sph0_lower = vfloat<M>(pos_inf);
vfloat<M> t_sph0_upper = vfloat<M>(neg_inf);
cone.intersectEndSphere(valid, coneR, t_sph1_lower, t_sph1_upper);
const vbool<M> isBeginPoint = valid & (vL[0] == vfloat<M>(pos_inf));
if (unlikely(any(isBeginPoint))) {
cone.intersectBeginSphere (isBeginPoint, t_sph0_lower, t_sph0_upper);
}
/* CSG union of cone and end sphere */
vfloat<M> t_sph_lower = min(t_sph0_lower, t_sph1_lower);
vfloat<M> t_cone_sphere_lower = min(t_cone_lower, t_sph_lower);
#if !defined (EMBREE_BACKFACE_CULLING_CURVES)
vfloat<M> t_sph_upper = max(t_sph0_upper, t_sph1_upper);
vfloat<M> t_cone_sphere_upper = max(t_cone_upper, t_sph_upper);
/* filter out hits that are not in tnear/tfar range */
const vbool<M> valid_lower = valid & ray_tnear <= dt+t_cone_sphere_lower & dt+t_cone_sphere_lower <= ray_tfar() & t_cone_sphere_lower != vfloat<M>(pos_inf);
const vbool<M> valid_upper = valid & ray_tnear <= dt+t_cone_sphere_upper & dt+t_cone_sphere_upper <= ray_tfar() & t_cone_sphere_upper != vfloat<M>(neg_inf);
/* check if there is a first hit */
const vbool<M> valid_first = valid_lower | valid_upper;
if (unlikely(none(valid_first)))
return false;
/* construct first hit */
const vfloat<M> t_first = select(valid_lower, t_cone_sphere_lower, t_cone_sphere_upper);
const vbool<M> cone_hit_first = t_first == t_cone_lower | t_first == t_cone_upper;
const vbool<M> sph0_hit_first = t_first == t_sph0_lower | t_first == t_sph0_upper;
const Vec3vf<M> Ng_first = select(cone_hit_first, cone.Ng_cone(valid_lower), select (sph0_hit_first, cone.Ng_sphere0(valid_lower), cone.Ng_sphere1(valid_lower)));
const vfloat<M> u_first = select(cone_hit_first, cone.u_cone(valid_lower), select (sph0_hit_first, vfloat<M>(zero), vfloat<M>(one)));
/* invoke intersection filter for first hit */
RoundLineIntersectorHitM<M> hit(u_first,zero,dt+t_first,Ng_first);
const bool is_hit_first = epilog(valid_first, hit);
/* check for possible second hits before potentially accepted hit */
const vfloat<M> t_second = t_cone_sphere_upper;
const vbool<M> valid_second = valid_lower & valid_upper & (dt+t_cone_sphere_upper <= ray_tfar());
if (unlikely(none(valid_second)))
return is_hit_first;
/* invoke intersection filter for second hit */
const vbool<M> cone_hit_second = t_second == t_cone_lower | t_second == t_cone_upper;
const vbool<M> sph0_hit_second = t_second == t_sph0_lower | t_second == t_sph0_upper;
const Vec3vf<M> Ng_second = select(cone_hit_second, cone.Ng_cone(false), select (sph0_hit_second, cone.Ng_sphere0(false), cone.Ng_sphere1(false)));
const vfloat<M> u_second = select(cone_hit_second, cone.u_cone(false), select (sph0_hit_second, vfloat<M>(zero), vfloat<M>(one)));
hit = RoundLineIntersectorHitM<M>(u_second,zero,dt+t_second,Ng_second);
const bool is_hit_second = epilog(valid_second, hit);
return is_hit_first | is_hit_second;
#else
/* filter out hits that are not in tnear/tfar range */
const vbool<M> valid_lower = valid & ray_tnear <= dt+t_cone_sphere_lower & dt+t_cone_sphere_lower <= ray_tfar() & t_cone_sphere_lower != vfloat<M>(pos_inf);
/* check if there is a valid hit */
if (unlikely(none(valid_lower)))
return false;
/* construct first hit */
const vbool<M> cone_hit_first = t_cone_sphere_lower == t_cone_lower | t_cone_sphere_lower == t_cone_upper;
const vbool<M> sph0_hit_first = t_cone_sphere_lower == t_sph0_lower | t_cone_sphere_lower == t_sph0_upper;
const Vec3vf<M> Ng_first = select(cone_hit_first, cone.Ng_cone(valid_lower), select (sph0_hit_first, cone.Ng_sphere0(valid_lower), cone.Ng_sphere1(valid_lower)));
const vfloat<M> u_first = select(cone_hit_first, cone.u_cone(valid_lower), select (sph0_hit_first, vfloat<M>(zero), vfloat<M>(one)));
/* invoke intersection filter for first hit */
RoundLineIntersectorHitM<M> hit(u_first,zero,dt+t_cone_sphere_lower,Ng_first);
const bool is_hit_first = epilog(valid_lower, hit);
return is_hit_first;
#endif
}
} // end namespace __roundline_internal
template<int M>
struct RoundLinearCurveIntersector1
{
typedef CurvePrecalculations1 Precalculations;
template<typename Ray>
struct ray_tfar {
Ray& ray;
__forceinline ray_tfar(Ray& ray) : ray(ray) {}
__forceinline vfloat<M> operator() () const { return ray.tfar; };
};
template<typename Ray, typename Epilog>
static __forceinline bool intersect(const vbool<M>& valid_i,
Ray& ray,
RayQueryContext* context,
const LineSegments* geom,
const Precalculations& pre,
const Vec4vf<M>& v0i, const Vec4vf<M>& v1i,
const Vec4vf<M>& vLi, const Vec4vf<M>& vRi,
const Epilog& epilog)
{
const Vec3vf<M> ray_org(ray.org.x, ray.org.y, ray.org.z);
const Vec3vf<M> ray_dir(ray.dir.x, ray.dir.y, ray.dir.z);
const vfloat<M> ray_tnear(ray.tnear());
const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i);
const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i);
const Vec4vf<M> vL = enlargeRadiusToMinWidth<M>(context,geom,ray_org,vLi);
const Vec4vf<M> vR = enlargeRadiusToMinWidth<M>(context,geom,ray_org,vRi);
return __roundline_internal::intersectConeSphere<M>(valid_i,ray_org,ray_dir,ray_tnear,ray_tfar<Ray>(ray),v0,v1,vL,vR,epilog);
}
};
template<int M, int K>
struct RoundLinearCurveIntersectorK
{
typedef CurvePrecalculationsK<K> Precalculations;
struct ray_tfar {
RayK<K>& ray;
size_t k;
__forceinline ray_tfar(RayK<K>& ray, size_t k) : ray(ray), k(k) {}
__forceinline vfloat<M> operator() () const { return ray.tfar[k]; };
};
template<typename Epilog>
static __forceinline bool intersect(const vbool<M>& valid_i,
RayK<K>& ray, size_t k,
RayQueryContext* context,
const LineSegments* geom,
const Precalculations& pre,
const Vec4vf<M>& v0i, const Vec4vf<M>& v1i,
const Vec4vf<M>& vLi, const Vec4vf<M>& vRi,
const Epilog& epilog)
{
const Vec3vf<M> ray_org(ray.org.x[k], ray.org.y[k], ray.org.z[k]);
const Vec3vf<M> ray_dir(ray.dir.x[k], ray.dir.y[k], ray.dir.z[k]);
const vfloat<M> ray_tnear = ray.tnear()[k];
const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i);
const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i);
const Vec4vf<M> vL = enlargeRadiusToMinWidth<M>(context,geom,ray_org,vLi);
const Vec4vf<M> vR = enlargeRadiusToMinWidth<M>(context,geom,ray_org,vRi);
return __roundline_internal::intersectConeSphere<M>(valid_i,ray_org,ray_dir,ray_tnear,ray_tfar(ray,k),v0,v1,vL,vR,epilog);
}
};
}
}
|