1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
#include "../common/scene_points.h"
#include "curve_intersector_precalculations.h"
namespace embree
{
namespace isa
{
template<int M>
struct SphereIntersectorHitM
{
__forceinline SphereIntersectorHitM() {}
__forceinline SphereIntersectorHitM(const vfloat<M>& t, const Vec3vf<M>& Ng)
: vt(t), vNg(Ng) {}
__forceinline void finalize() {}
__forceinline Vec2f uv(const size_t i) const {
return Vec2f(0.0f, 0.0f);
}
__forceinline Vec2vf<M> uv() const {
return Vec2vf<M>(0.0f, 0.0f);
}
__forceinline float t(const size_t i) const {
return vt[i];
}
__forceinline vfloat<M> t() const {
return vt;
}
__forceinline Vec3fa Ng(const size_t i) const {
return Vec3fa(vNg.x[i], vNg.y[i], vNg.z[i]);
}
__forceinline Vec3vf<M> Ng() const {
return vNg;
}
public:
vfloat<M> vt;
Vec3vf<M> vNg;
};
template<>
struct SphereIntersectorHitM<1>
{
__forceinline SphereIntersectorHitM() {}
__forceinline SphereIntersectorHitM(const float& t, const Vec3f& Ng)
: vt(t), vNg(Ng) {}
__forceinline void finalize() {}
__forceinline Vec2f uv() const {
return Vec2f(0.0f, 0.0f);
}
__forceinline float t() const {
return vt;
}
__forceinline Vec3f Ng() const {
return vNg;
}
public:
float vt;
Vec3f vNg;
};
template<int M>
struct SphereIntersector1
{
typedef CurvePrecalculations1 Precalculations;
template<typename Ray, typename Epilog>
static __forceinline bool intersect(
const vbool<M>& valid_i, Ray& ray,
const Precalculations& pre, const Vec4vf<M>& v0, const Epilog& epilog)
{
vbool<M> valid = valid_i;
const vfloat<M> rd2 = rcp(dot(ray.dir, ray.dir));
const Vec3vf<M> ray_org(ray.org.x, ray.org.y, ray.org.z);
const Vec3vf<M> ray_dir(ray.dir.x, ray.dir.y, ray.dir.z);
const Vec3vf<M> center = v0.xyz();
const vfloat<M> radius = v0.w;
const Vec3vf<M> c0 = center - ray_org;
const vfloat<M> projC0 = dot(c0, ray_dir) * rd2;
const Vec3vf<M> perp = c0 - projC0 * ray_dir;
const vfloat<M> l2 = dot(perp, perp);
const vfloat<M> r2 = radius * radius;
valid &= (l2 <= r2);
if (unlikely(none(valid)))
return false;
const vfloat<M> td = sqrt((r2 - l2) * rd2);
const vfloat<M> t_front = projC0 - td;
const vfloat<M> t_back = projC0 + td;
const vbool<M> valid_front = valid & (ray.tnear() <= t_front) & (t_front <= ray.tfar);
/* check if there is a first hit */
#if defined (EMBREE_BACKFACE_CULLING_SPHERES)
/* check if there is a first hit */
const vbool<M> valid_first = valid_front;
#else
const vbool<M> valid_back = valid & (ray.tnear() <= t_back ) & (t_back <= ray.tfar);
const vbool<M> valid_first = valid_front | valid_back;
#endif
if (unlikely(none(valid_first)))
return false;
/* construct first hit */
const vfloat<M> td_front = -td;
const vfloat<M> td_back = +td;
const vfloat<M> t_first = select(valid_front, t_front, t_back);
const Vec3vf<M> Ng_first = select(valid_front, td_front, td_back) * ray_dir - perp;
SphereIntersectorHitM<M> hit(t_first, Ng_first);
/* invoke intersection filter for first hit */
const bool is_hit_first = epilog(valid_first, hit);
#if defined (EMBREE_BACKFACE_CULLING_SPHERES)
return is_hit_first;
#else
/* check for possible second hits before potentially accepted hit */
const vfloat<M> t_second = t_back;
const vbool<M> valid_second = valid_front & valid_back & (t_second <= ray.tfar);
if (unlikely(none(valid_second)))
return is_hit_first;
/* invoke intersection filter for second hit */
const Vec3vf<M> Ng_second = td_back * ray_dir - perp;
hit = SphereIntersectorHitM<M> (t_second, Ng_second);
const bool is_hit_second = epilog(valid_second, hit);
return is_hit_first | is_hit_second;
#endif
}
template<typename Epilog>
static __forceinline bool intersect(
const vbool<M>& valid_i, Ray& ray, RayQueryContext* context, const Points* geom,
const Precalculations& pre, const Vec4vf<M>& v0i, const Epilog& epilog)
{
const Vec3vf<M> ray_org(ray.org.x, ray.org.y, ray.org.z);
const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i);
return intersect(valid_i,ray,pre,v0,epilog);
}
};
template<int M, int K>
struct SphereIntersectorK
{
typedef CurvePrecalculationsK<K> Precalculations;
template<typename Epilog>
static __forceinline bool intersect(const vbool<M>& valid_i,
RayK<K>& ray, size_t k,
RayQueryContext* context,
const Points* geom,
const Precalculations& pre,
const Vec4vf<M>& v0i,
const Epilog& epilog)
{
vbool<M> valid = valid_i;
const Vec3vf<M> ray_org(ray.org.x[k], ray.org.y[k], ray.org.z[k]);
const Vec3vf<M> ray_dir(ray.dir.x[k], ray.dir.y[k], ray.dir.z[k]);
const vfloat<M> rd2 = rcp(dot(ray_dir, ray_dir));
const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i);
const Vec3vf<M> center = v0.xyz();
const vfloat<M> radius = v0.w;
const Vec3vf<M> c0 = center - ray_org;
const vfloat<M> projC0 = dot(c0, ray_dir) * rd2;
const Vec3vf<M> perp = c0 - projC0 * ray_dir;
const vfloat<M> l2 = dot(perp, perp);
const vfloat<M> r2 = radius * radius;
valid &= (l2 <= r2);
if (unlikely(none(valid)))
return false;
const vfloat<M> td = sqrt((r2 - l2) * rd2);
const vfloat<M> t_front = projC0 - td;
const vfloat<M> t_back = projC0 + td;
const vbool<M> valid_front = valid & (ray.tnear()[k] <= t_front) & (t_front <= ray.tfar[k]);
/* check if there is a first hit */
#if defined (EMBREE_BACKFACE_CULLING_SPHERES)
const vbool<M> valid_first = valid_front;
#else
const vbool<M> valid_back = valid & (ray.tnear()[k] <= t_back ) & (t_back <= ray.tfar[k]);
const vbool<M> valid_first = valid_front | valid_back;
#endif
if (unlikely(none(valid_first)))
return false;
/* construct first hit */
const vfloat<M> td_front = -td;
const vfloat<M> td_back = +td;
const vfloat<M> t_first = select(valid_front, t_front, t_back);
const Vec3vf<M> Ng_first = select(valid_front, td_front, td_back) * ray_dir - perp;
SphereIntersectorHitM<M> hit(t_first, Ng_first);
/* invoke intersection filter for first hit */
const bool is_hit_first = epilog(valid_first, hit);
#if defined (EMBREE_BACKFACE_CULLING_SPHERES)
return is_hit_first;
#else
/* check for possible second hits before potentially accepted hit */
const vfloat<M> t_second = t_back;
const vbool<M> valid_second = valid_front & valid_back & (t_second <= ray.tfar[k]);
if (unlikely(none(valid_second)))
return is_hit_first;
/* invoke intersection filter for second hit */
const Vec3vf<M> Ng_second = td_back * ray_dir - perp;
hit = SphereIntersectorHitM<M> (t_second, Ng_second);
const bool is_hit_second = epilog(valid_second, hit);
return is_hit_first | is_hit_second;
#endif
}
};
} // namespace isa
} // namespace embree
|