1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "patch.h"
#include "feature_adaptive_eval_grid.h"
namespace embree
{
namespace isa
{
struct PatchEvalGrid
{
typedef Patch3fa Patch;
typedef Patch::Ref Ref;
typedef GeneralCatmullClarkPatch3fa GeneralCatmullClarkPatch;
typedef CatmullClarkPatch3fa CatmullClarkPatch;
typedef BSplinePatch3fa BSplinePatch;
typedef BezierPatch3fa BezierPatch;
typedef GregoryPatch3fa GregoryPatch;
typedef BilinearPatch3fa BilinearPatch;
private:
const unsigned x0,x1;
const unsigned y0,y1;
const unsigned swidth,sheight;
const float rcp_swidth, rcp_sheight;
float* const Px;
float* const Py;
float* const Pz;
float* const U;
float* const V;
float* const Nx;
float* const Ny;
float* const Nz;
const unsigned dwidth,dheight;
unsigned count;
public:
PatchEvalGrid (Ref patch, unsigned subPatch,
const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
float* Px, float* Py, float* Pz, float* U, float* V,
float* Nx, float* Ny, float* Nz,
const unsigned dwidth, const unsigned dheight)
: x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)),
Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), dheight(dheight), count(0)
{
assert(swidth < (2<<20) && sheight < (2<<20));
const BBox2f srange(Vec2f(0.0f,0.0f),Vec2f(float(swidth-1),float(sheight-1)));
const BBox2f erange(Vec2f(float(x0),float(y0)),Vec2f((float)x1,(float)y1));
bool done MAYBE_UNUSED = eval(patch,subPatch,srange,erange);
assert(done);
assert(count == (x1-x0+1)*(y1-y0+1));
}
template<typename Patch>
__forceinline void evalLocalGrid(const Patch* patch, const BBox2f& srange, const int lx0, const int lx1, const int ly0, const int ly1)
{
const float scale_x = rcp(srange.upper.x-srange.lower.x);
const float scale_y = rcp(srange.upper.y-srange.lower.y);
count += (lx1-lx0)*(ly1-ly0);
#if 0
for (unsigned iy=ly0; iy<ly1; iy++) {
for (unsigned ix=lx0; ix<lx1; ix++) {
const float lu = select(ix == swidth -1, float(1.0f), (float(ix)-srange.lower.x)*scale_x);
const float lv = select(iy == sheight-1, float(1.0f), (float(iy)-srange.lower.y)*scale_y);
const Vec3fa p = patch->patch.eval(lu,lv);
const float u = float(ix)*rcp_swidth;
const float v = float(iy)*rcp_sheight;
const int ofs = (iy-y0)*dwidth+(ix-x0);
Px[ofs] = p.x;
Py[ofs] = p.y;
Pz[ofs] = p.z;
U[ofs] = u;
V[ofs] = v;
}
}
#else
foreach2(lx0,lx1,ly0,ly1,[&](const vboolx& valid, const vintx& ix, const vintx& iy) {
const vfloatx lu = select(ix == swidth -1, vfloatx(1.0f), (vfloatx(ix)-srange.lower.x)*scale_x);
const vfloatx lv = select(iy == sheight-1, vfloatx(1.0f), (vfloatx(iy)-srange.lower.y)*scale_y);
const Vec3vfx p = patch->patch.eval(lu,lv);
Vec3vfx n = zero;
if (unlikely(Nx != nullptr)) n = normalize_safe(patch->patch.normal(lu,lv));
const vfloatx u = vfloatx(ix)*rcp_swidth;
const vfloatx v = vfloatx(iy)*rcp_sheight;
const vintx ofs = (iy-y0)*dwidth+(ix-x0);
if (likely(all(valid)) && all(iy==iy[0])) {
const unsigned ofs2 = ofs[0];
vfloatx::storeu(Px+ofs2,p.x);
vfloatx::storeu(Py+ofs2,p.y);
vfloatx::storeu(Pz+ofs2,p.z);
vfloatx::storeu(U+ofs2,u);
vfloatx::storeu(V+ofs2,v);
if (unlikely(Nx != nullptr)) {
vfloatx::storeu(Nx+ofs2,n.x);
vfloatx::storeu(Ny+ofs2,n.y);
vfloatx::storeu(Nz+ofs2,n.z);
}
} else {
foreach_unique_index(valid,iy,[&](const vboolx& valid, const int iy0, const int j) {
const unsigned ofs2 = ofs[j]-j;
vfloatx::storeu(valid,Px+ofs2,p.x);
vfloatx::storeu(valid,Py+ofs2,p.y);
vfloatx::storeu(valid,Pz+ofs2,p.z);
vfloatx::storeu(valid,U+ofs2,u);
vfloatx::storeu(valid,V+ofs2,v);
if (unlikely(Nx != nullptr)) {
vfloatx::storeu(valid,Nx+ofs2,n.x);
vfloatx::storeu(valid,Ny+ofs2,n.y);
vfloatx::storeu(valid,Nz+ofs2,n.z);
}
});
}
});
#endif
}
bool eval(Ref This, const BBox2f& srange, const BBox2f& erange, const unsigned depth)
{
if (erange.empty())
return true;
const int lx0 = (int) ceilf(erange.lower.x);
const int lx1 = (int) ceilf(erange.upper.x) + (erange.upper.x == x1 && (srange.lower.x < erange.upper.x || erange.upper.x == 0));
const int ly0 = (int) ceilf(erange.lower.y);
const int ly1 = (int) ceilf(erange.upper.y) + (erange.upper.y == y1 && (srange.lower.y < erange.upper.y || erange.upper.y == 0));
if (lx0 >= lx1 || ly0 >= ly1)
return true;
if (!This)
return false;
switch (This.type())
{
case Patch::BILINEAR_PATCH: {
evalLocalGrid((Patch::BilinearPatch*)This.object(),srange,lx0,lx1,ly0,ly1);
return true;
}
case Patch::BSPLINE_PATCH: {
evalLocalGrid((Patch::BSplinePatch*)This.object(),srange,lx0,lx1,ly0,ly1);
return true;
}
case Patch::BEZIER_PATCH: {
evalLocalGrid((Patch::BezierPatch*)This.object(),srange,lx0,lx1,ly0,ly1);
return true;
}
case Patch::GREGORY_PATCH: {
evalLocalGrid((Patch::GregoryPatch*)This.object(),srange,lx0,lx1,ly0,ly1);
return true;
}
case Patch::SUBDIVIDED_QUAD_PATCH:
{
const Vec2f c = srange.center();
const BBox2f srange0(srange.lower,c);
const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y));
const BBox2f srange2(c,srange.upper);
const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y));
Patch::SubdividedQuadPatch* patch = (Patch::SubdividedQuadPatch*)This.object();
eval(patch->child[0],srange0,intersect(srange0,erange),depth+1);
eval(patch->child[1],srange1,intersect(srange1,erange),depth+1);
eval(patch->child[2],srange2,intersect(srange2,erange),depth+1);
eval(patch->child[3],srange3,intersect(srange3,erange),depth+1);
return true;
}
case Patch::EVAL_PATCH: {
CatmullClarkPatch patch; patch.deserialize(This.object());
FeatureAdaptiveEvalGrid(patch,srange,erange,depth,x0,x1,y0,y1,swidth,sheight,Px,Py,Pz,U,V,Nx,Ny,Nz,dwidth,dheight);
count += (lx1-lx0)*(ly1-ly0);
return true;
}
default:
assert(false);
return false;
}
}
bool eval(Ref This, unsigned subPatch, const BBox2f& srange, const BBox2f& erange)
{
if (!This)
return false;
switch (This.type())
{
case Patch::SUBDIVIDED_GENERAL_PATCH: {
Patch::SubdividedGeneralPatch* patch = (Patch::SubdividedGeneralPatch*)This.object();
assert(subPatch < patch->N);
return eval(patch->child[subPatch],srange,erange,1);
}
default:
assert(subPatch == 0);
return eval(This,srange,erange,0);
}
}
};
__forceinline unsigned patch_eval_subdivision_count (const HalfEdge* h)
{
const unsigned N = h->numEdges();
if (N == 4) return 1;
else return N;
}
template<typename Tessellator>
inline void patch_eval_subdivision (const HalfEdge* h, Tessellator tessellator)
{
const unsigned N = h->numEdges();
int neighborSubdiv[GeneralCatmullClarkPatch3fa::SIZE]; // FIXME: use array_t
float levels[GeneralCatmullClarkPatch3fa::SIZE];
for (unsigned i=0; i<N; i++) {
assert(i<GeneralCatmullClarkPatch3fa::SIZE);
neighborSubdiv[i] = h->hasOpposite() ? h->opposite()->numEdges() != 4 : 0;
levels[i] = h->edge_level;
h = h->next();
}
if (N == 4)
{
const Vec2f uv[4] = { Vec2f(0.0f,0.0f), Vec2f(1.0f,0.0f), Vec2f(1.0f,1.0f), Vec2f(0.0f,1.0f) };
tessellator(uv,neighborSubdiv,levels,0);
}
else
{
for (unsigned i=0; i<N; i++)
{
assert(i<MAX_PATCH_VALENCE);
static_assert(MAX_PATCH_VALENCE <= 16, "MAX_PATCH_VALENCE > 16");
const int h = (i >> 2) & 3, l = i & 3;
const Vec2f subPatchID((float)l,(float)h);
const Vec2f uv[4] = { 2.0f*subPatchID + (0.5f+Vec2f(0.0f,0.0f)),
2.0f*subPatchID + (0.5f+Vec2f(1.0f,0.0f)),
2.0f*subPatchID + (0.5f+Vec2f(1.0f,1.0f)),
2.0f*subPatchID + (0.5f+Vec2f(0.0f,1.0f)) };
const int neighborSubdiv1[4] = { 0,0,0,0 };
const float levels1[4] = { 0.5f*levels[(i+0)%N], 0.5f*levels[(i+0)%N], 0.5f*levels[(i+N-1)%N], 0.5f*levels[(i+N-1)%N] };
tessellator(uv,neighborSubdiv1,levels1,i);
}
}
}
}
}
|