File: generate_motion_derivative_coefficients.py

package info (click to toggle)
embree 4.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 100,656 kB
  • sloc: cpp: 228,918; xml: 40,944; ansic: 2,685; python: 812; sh: 635; makefile: 228; csh: 42
file content (174 lines) | stat: -rwxr-xr-x 7,226 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python3

## Copyright 2009-2021 Intel Corporation
## SPDX-License-Identifier: Apache-2.0

## Used to generate code in kernels/common/motion_derivative.h


import sympy as sp
import numpy as np
import math


################################################################################
#### Utils
################################################################################

def getTerms(map, key):
    if key in map.keys():
        return map[key]
    return 0

# simple linear interpolation wrapper
def lerp(v0,v1,t):
    return v0*(1-t)+v1*t

# custom quaternion to matrix conversion
def to_rotation_matrix(q):
    return sp.Matrix([[q.a*q.a + q.b*q.b - q.c*q.c - q.d*q.d, 2*(q.b*q.c - q.a*q.d),                 2*(q.b*q.d + q.a*q.c),                 0],
                      [2*(q.b*q.c + q.a*q.d),                 q.a*q.a - q.b*q.b + q.c*q.c - q.d*q.d, 2*(q.c*q.d - q.a*q.b),                 0],
                      [2*(q.b*q.d - q.a*q.c),                 2*(q.c*q.d + q.a*q.b),                 q.a*q.a - q.b*q.b - q.c*q.c + q.d*q.d, 0],
                      [0,                                     0,                                     0,                                     1]])


################################################################################
#### Set up symbolic objects
################################################################################

t, theta = sp.symbols("t, theta", real = True)

px0, py0, pz0 = sp.symbols("px0, py0, pz0", real=True) # vertex position at t=0
px1, py1, pz1 = sp.symbols("px1, py1, pz1", real=True) # vertex position at t=1

tx0, ty0, tz0 = sp.symbols("tx0, ty0, tz0", real=True) # translation at t=0
tx1, ty1, tz1 = sp.symbols("tx1, ty1, tz1", real=True) # translation at t=1

qx0, qy0, qz0, qw0 = sp.symbols("qx0, qy0, qz0, qw0", real=True) # quaternion at t=0 
qx1, qy1, qz1, qw1 = sp.symbols("qx1, qy1, qz1, qw1", real=True) # quaternion at t=1

# coefficients for upper triangular matrices
s000, s001, s002, s003, s011, s012, s013, s022, s023 = sp.symbols("s000, s001, s002, s003, s011, s012, s013, s022, s023", real=True)
s100, s101, s102, s103, s111, s112, s113, s122, s123 = sp.symbols("s100, s101, s102, s103, s111, s112, s113, s122, s123", real=True)

q0 = sp.Quaternion(qw0, qx0, qy0, qz0)
q1 = sp.Quaternion(qw1, qx1, qy1, qz1)

# assuming that q1 is qperp = normalize(q1-q0*cosTheta), where cosTheta=dot(q0, q1) and theta = acos(cosTheta).
# this simplifies the terms of the symbolic expressions later
qt = q0 * sp.cos(t*theta) + q1 * sp.sin(t*theta)

S0 = sp.Matrix([[s000, s001, s002, s003],
                [   0, s011, s012, s013],
                [   0,    0, s022, s023],
                [   0,    0,    0,    1]])
S1 = sp.Matrix([[s100, s101, s102, s103],
                [   0, s111, s112, s113],
                [   0,    0, s122, s123],
                [   0,    0,    0,    1]])
D0 = sp.Matrix([[1, 0, 0, tx0],
                [0, 1, 0, ty0],
                [0, 0, 1, tz0],
                [0, 0, 0,  1]])
D1 = sp.Matrix([[1, 0, 0, tx1],
                [0, 1, 0, ty1],
                [0, 0, 1, tz1],
                [0, 0, 0,  1]])
p0 = sp.Matrix([px0, py0, pz0, 1])
p1 = sp.Matrix([px1, py1, pz1, 1])

Gamma = lerp(D0, D1, t)*to_rotation_matrix(qt)*lerp(S0, S1, t)*lerp(p0, p1, t)
C = sp.Matrix(np.empty(8))   # 8 coefficients
K = sp.Matrix(np.empty(7))   # 7 inputs
A = sp.Matrix(np.empty(8*7*3)) # 8 coefficients, 7 inputs (1, px0, py0, pz0, px1, py1, pz1), 3 dimensions (x, y, z)
dGamma = sp.diff(Gamma, t)


################################################################################
#### Group the coefficients (this might time a couple of seconds)
################################################################################

# loop over dimensions (x, y, z)
for dim in range(3):
    dm = sp.expand(dGamma[dim])
    dm = dm.subs(sp.sin(t*theta)*sp.sin(t*theta),(1-sp.cos(2*t*theta))/2) # remove sin(t*theta)^2
    dm = dm.subs(sp.cos(t*theta)*sp.cos(t*theta),(1+sp.cos(2*t*theta))/2) # remove cos(t*theta)^2
    dm = dm.subs(sp.sin(t*theta)*sp.cos(t*theta),sp.sin(2*t*theta)/2)     # remove sin(t*theta)*cos(t*theta)
    dm = sp.expand(dm)

    # group all terms in the form a + b * cos(2*t*theta) + c * sin(2*t*theta)
    dm_cos_sin = sp.collect(dm, (sp.cos(2*t*theta), sp.sin(2*t*theta)), evaluate=False)

    # get the terms
    coeff_cos   = getTerms(dm_cos_sin, sp.cos(2*t*theta))
    coeff_sin   = getTerms(dm_cos_sin, sp.sin(2*t*theta))
    coeff_const = getTerms(dm_cos_sin, 1)

    # group the term in the form a + b * t 
    coeff_const_t = sp.collect(coeff_const, t, evaluate=False)
    C[0] = getTerms(coeff_const_t, 1)
    C[1] = getTerms(coeff_const_t, t)

    # group the term in the form a + b * t + c * t^2 
    coeff_cos_t = sp.collect(coeff_cos, t, evaluate=False)
    C[2] = getTerms(coeff_cos_t, 1)
    C[3] = getTerms(coeff_cos_t, t)
    C[4] = getTerms(coeff_cos_t, t*t)

    # group the term in the form a + b * t + c * t^2 
    coeff_sin_t = sp.collect(coeff_sin, t, evaluate=False)
    C[5] = getTerms(coeff_sin_t, 1)
    C[6] = getTerms(coeff_sin_t, t)
    C[7] = getTerms(coeff_sin_t, t*t)

    for c in range(8):
        kc = sp.collect(C[c], (px0, py0, pz0, px1, py1, pz1), evaluate=False)
        K[0] = getTerms(kc, 1)
        K[1] = getTerms(kc, px0)
        K[2] = getTerms(kc, py0)
        K[3] = getTerms(kc, pz0)
        K[4] = getTerms(kc, px1)
        K[5] = getTerms(kc, py1)
        K[6] = getTerms(kc, pz1)

        for k in range(7):
            K[k] = sp.expand(K[k])
            K[k] = K[k].subs(qw0*qw0, 1-qx0*qx0-qy0*qy0-qz0*qz0) # clean up substitutions
            K[k] = K[k].subs(qw1*qw1, 1-qx1*qx1-qy1*qy1-qz1*qz1) # clean up substitutions
            K[k] = sp.simplify(K[k])
            A[8*7*dim + c*7 + k] = K[k]


################################################################################
#### Write code to file
################################################################################

from sympy.utilities.codegen import codegen, default_datatypes
from sympy.codegen.ast import real, float32
from sympy.printing.ccode import C99CodePrinter
printer = C99CodePrinter()

# custom code printer that will not generate such nonesene as x^2 -> pow(x, 2)
class CustomCodePrinter(C99CodePrinter):
    def _print_Pow(self, expr):
        if expr.exp.is_integer and expr.exp > 0 and expr.exp < 5:
            return '*'.join([self._print(expr.base) for i in range(expr.exp)])
        else:
            return super()._print_Pow(expr)

customprinter = CustomCodePrinter()
customprinter.type_aliases[real] = float32 # cosf instead of cos
default_datatypes["float"].cname = "float" # float instead of double
params = [
    theta,
    tx0, ty0, tz0,
    tx1, ty1, tz1,
    qw0, qx0, qy0, qz0,
    qw1, qx1, qy1, qz1,
    s000, s001, s002, s003, s011, s012, s013, s022, s023,
    s100, s101, s102, s103, s111, s112, s113, s122, s123]
R = sp.MatrixSymbol("coeff", A.shape[0], A.shape[1])
P = sp.MatrixSymbol('p', len(params), 1)
param_map = dict(zip(params, P))
B = A.xreplace(param_map)
codegen(('motion_derivative_coefficients', sp.Eq(R,B)), language='c', printer=customprinter, prefix='motion_derivative_coefficients', to_files=True)