1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial.h"
#include "../common/tutorial/tutorial_device.h"
#include "../../include/embree4/rtcore.h"
RTC_NAMESPACE_USE
#include "../../kernels/bvh/bvh.h"
#include "../../kernels/geometry/trianglev.h"
namespace embree
{
/* error reporting function */
void error_handler(void* userPtr, const RTCError code, const char* str)
{
if (code == RTC_ERROR_NONE)
return;
printf("Embree: ");
switch (code) {
case RTC_ERROR_UNKNOWN : printf("RTC_ERROR_UNKNOWN"); break;
case RTC_ERROR_INVALID_ARGUMENT : printf("RTC_ERROR_INVALID_ARGUMENT"); break;
case RTC_ERROR_INVALID_OPERATION: printf("RTC_ERROR_INVALID_OPERATION"); break;
case RTC_ERROR_OUT_OF_MEMORY : printf("RTC_ERROR_OUT_OF_MEMORY"); break;
case RTC_ERROR_UNSUPPORTED_CPU : printf("RTC_ERROR_UNSUPPORTED_CPU"); break;
case RTC_ERROR_CANCELLED : printf("RTC_ERROR_CANCELLED"); break;
default : printf("invalid error code"); break;
}
if (str) {
printf(" (");
while (*str) putchar(*str++);
printf(")\n");
}
exit(1);
}
/* adds a cube to the scene */
unsigned int addCube (RTCDevice device_i, RTCScene scene_i, const Vec3fa& pos)
{
/* create a triangulated cube with 12 triangles and 8 vertices */
RTCGeometry mesh = rtcNewGeometry (device_i, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(mesh, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vec3fa), 8);
vertices[0].x = pos.x + -1; vertices[0].y = pos.y + -1; vertices[0].z = pos.z + -1;
vertices[1].x = pos.x + -1; vertices[1].y = pos.y + -1; vertices[1].z = pos.z + +1;
vertices[2].x = pos.x + -1; vertices[2].y = pos.y + +1; vertices[2].z = pos.z + -1;
vertices[3].x = pos.x + -1; vertices[3].y = pos.y + +1; vertices[3].z = pos.z + +1;
vertices[4].x = pos.x + +1; vertices[4].y = pos.y + -1; vertices[4].z = pos.z + -1;
vertices[5].x = pos.x + +1; vertices[5].y = pos.y + -1; vertices[5].z = pos.z + +1;
vertices[6].x = pos.x + +1; vertices[6].y = pos.y + +1; vertices[6].z = pos.z + -1;
vertices[7].x = pos.x + +1; vertices[7].y = pos.y + +1; vertices[7].z = pos.z + +1;
/* set triangles */
int tri = 0;
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(mesh, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(Triangle), 12);
// left side
triangles[tri].v0 = 0; triangles[tri].v1 = 2; triangles[tri].v2 = 1; tri++;
triangles[tri].v0 = 1; triangles[tri].v1 = 2; triangles[tri].v2 = 3; tri++;
// right side
triangles[tri].v0 = 4; triangles[tri].v1 = 5; triangles[tri].v2 = 6; tri++;
triangles[tri].v0 = 5; triangles[tri].v1 = 7; triangles[tri].v2 = 6; tri++;
// bottom side
triangles[tri].v0 = 0; triangles[tri].v1 = 1; triangles[tri].v2 = 4; tri++;
triangles[tri].v0 = 1; triangles[tri].v1 = 5; triangles[tri].v2 = 4; tri++;
// top side
triangles[tri].v0 = 2; triangles[tri].v1 = 6; triangles[tri].v2 = 3; tri++;
triangles[tri].v0 = 3; triangles[tri].v1 = 6; triangles[tri].v2 = 7; tri++;
// front side
triangles[tri].v0 = 0; triangles[tri].v1 = 4; triangles[tri].v2 = 2; tri++;
triangles[tri].v0 = 2; triangles[tri].v1 = 4; triangles[tri].v2 = 6; tri++;
// back side
triangles[tri].v0 = 1; triangles[tri].v1 = 3; triangles[tri].v2 = 5; tri++;
triangles[tri].v0 = 3; triangles[tri].v1 = 7; triangles[tri].v2 = 5; tri++;
rtcCommitGeometry(mesh);
unsigned int geomID = rtcAttachGeometry(scene_i,mesh);
rtcReleaseGeometry(mesh);
return geomID;
}
/* adds a ground plane to the scene */
unsigned int addGroundPlane (RTCDevice device_i, RTCScene scene_i)
{
/* create a triangulated plane with 2 triangles and 4 vertices */
RTCGeometry mesh = rtcNewGeometry (device_i, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
Vec3fa* vertices = (Vec3fa*) rtcSetNewGeometryBuffer(mesh, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vec3fa), 4);
vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;
/* set triangles */
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(mesh, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(Triangle), 2);
triangles[0].v0 = 0; triangles[0].v1 = 2; triangles[0].v2 = 1;
triangles[1].v0 = 1; triangles[1].v1 = 2; triangles[1].v2 = 3;
rtcCommitGeometry(mesh);
unsigned int geomID = rtcAttachGeometry(scene_i,mesh);
rtcReleaseGeometry(mesh);
return geomID;
}
/* adds a hair to the scene */
unsigned int addHair(RTCDevice device_i, RTCScene scene_i)
{
RTCGeometry geom = rtcNewGeometry (device_i, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE);
vfloat4* pos = (vfloat4*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, sizeof(vfloat4), 4);
pos[0] = vfloat4(0.0f,0.0f,0.0f,0.1f);
pos[1] = vfloat4(0.0f,1.0f,0.0f,0.1f);
pos[2] = vfloat4(0.0f,2.0f,0.0f,0.1f);
pos[3] = vfloat4(0.0f,3.0f,0.0f,0.1f);
int* index = (int*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, sizeof(int), 1);
index[0] = 0;
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene_i,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* prints the bvh4.triangle4v data structure */
void print_bvh4_triangle4v(BVH4::NodeRef node, size_t depth)
{
if (node.isAABBNode())
{
BVH4::AABBNode* n = node.getAABBNode();
std::cout << "AABBNode {" << std::endl;
for (size_t i=0; i<4; i++)
{
for (size_t k=0; k<depth; k++) std::cout << " ";
std::cout << " bounds" << i << " = " << n->bounds(i) << std::endl;
}
for (size_t i=0; i<4; i++)
{
if (n->child(i) == BVH4::emptyNode)
continue;
for (size_t k=0; k<depth; k++) std::cout << " ";
std::cout << " child" << i << " = ";
print_bvh4_triangle4v(n->child(i),depth+1);
}
for (size_t k=0; k<depth; k++) std::cout << " ";
std::cout << "}" << std::endl;
}
else
{
size_t num;
const Triangle4v* tri = (const Triangle4v*) node.leaf(num);
std::cout << "Leaf {" << std::endl;
for (size_t i=0; i<num; i++) {
for (size_t j=0; j<tri[i].size(); j++) {
for (size_t k=0; k<depth; k++) std::cout << " ";
std::cout << " Triangle { v0 = (" << tri[i].v0.x[j] << ", " << tri[i].v0.y[j] << ", " << tri[i].v0.z[j] << "), "
"v1 = (" << tri[i].v1.x[j] << ", " << tri[i].v1.y[j] << ", " << tri[i].v1.z[j] << "), "
"v2 = (" << tri[i].v2.x[j] << ", " << tri[i].v2.y[j] << ", " << tri[i].v2.z[j] << "), "
"geomID = " << tri[i].geomID(j) << ", primID = " << tri[i].primID(j) << " }" << std::endl;
}
}
for (size_t k=0; k<depth; k++) std::cout << " ";
std::cout << "}" << std::endl;
}
}
/* prints the triangle BVH of a scene */
void print_bvh(RTCScene scene)
{
BVH4* bvh4 = nullptr;
/* if the scene contains only triangles, the BVH4 acceleration structure can be obtained this way */
AccelData* accel = ((Accel*)scene)->intersectors.ptr;
if (accel->type == AccelData::TY_BVH4)
bvh4 = (BVH4*)accel;
/* if there are also other geometry types, one has to iterate over the toplevel AccelN structure */
else if (accel->type == AccelData::TY_ACCELN)
{
AccelN* accelN = (AccelN*)(accel);
for (size_t i=0; i<accelN->accels.size(); i++) {
if (accelN->accels[i]->intersectors.ptr->type == AccelData::TY_BVH4) {
bvh4 = (BVH4*)accelN->accels[i]->intersectors.ptr;
if (std::string(bvh4->primTy->name()) == "triangle4v") break;
bvh4 = nullptr;
}
}
}
if (bvh4 == nullptr)
throw std::runtime_error("cannot access BVH4 acceleration structure"); // will not happen if you use this Embree version
/* now lets print the entire hierarchy */
print_bvh4_triangle4v(bvh4->root,0);
}
/* main function in embree namespace */
int main(int argc, char** argv)
{
/* for best performance set FTZ and DAZ flags in MXCSR control and status register */
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
/* create new Embree device and force bvh4.triangle4v hierarchy for triangles */
RTCDevice device = rtcNewDevice("tri_accel=bvh4.triangle4v");
error_handler(nullptr,rtcGetDeviceError(device));
/* set error handler */
rtcSetDeviceErrorFunction(device,error_handler,nullptr);
/* create scene */
RTCScene scene = rtcNewScene(device);
addCube(device,scene,Vec3fa(-1,0,0));
addCube(device,scene,Vec3fa(1,0,0));
addCube(device,scene,Vec3fa(0,0,-1));
addCube(device,scene,Vec3fa(0,0,1));
addHair(device,scene);
addGroundPlane(device,scene);
rtcCommitScene (scene);
/* print triangle BVH */
print_bvh(scene);
/* cleanup */
rtcReleaseScene (scene);
rtcReleaseDevice(device);
/* wait for user input under Windows when opened in separate window */
waitForKeyPressedUnderWindows();
return 0;
}
}
int main(int argc, char** argv)
{
try {
return embree::main(argc, argv);
}
catch (const std::exception& e) {
std::cout << "Error: " << e.what() << std::endl;
return 1;
}
catch (...) {
std::cout << "Error: unknown exception caught." << std::endl;
return 1;
}
}
|