1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
/*! \brief utility library containing sampling functions */
// convention is to return the sample (Vec3fa) generated from given Vec2f 's'ample as last parameter
// sampling functions often come in pairs: sample and pdf (needed later for MIS)
// good reference is "Total Compendium" by Philip Dutre http://people.cs.kuleuven.be/~philip.dutre/GI/
#include "../math/vec.h"
#include "../math/linearspace.h"
namespace embree {
struct Sample3f
{
Vec3fa v;
float pdf;
};
inline Sample3f make_Sample3f(const Vec3fa& v, const float pdf) {
Sample3f s; s.v = v; s.pdf = pdf; return s;
}
#if defined(ISPC)
inline Sample3f make_Sample3f(const Vec3fa& v, const float pdf) {
Sample3f s; s.v = v; s.pdf = pdf; return s;
}
#endif
inline Vec3fa cartesian(const float phi, const float sinTheta, const float cosTheta)
{
const float sinPhi = sinf(phi);
const float cosPhi = cosf(phi);
//sincosf(phi, &sinPhi, &cosPhi);
return Vec3fa(cosPhi * sinTheta,
sinPhi * sinTheta,
cosTheta);
}
inline Vec3fa cartesian(const float phi, const float cosTheta)
{
return cartesian(phi, cos2sin(cosTheta), cosTheta);
}
/// cosine-weighted sampling of hemisphere oriented along the +z-axis
////////////////////////////////////////////////////////////////////////////////
inline Vec3fa cosineSampleHemisphere(const Vec2f s)
{
const float phi = 2.0f * float(M_PI) * s.x;
const float cosTheta = sqrt(s.y);
const float sinTheta = sqrt(1.0f - s.y);
return cartesian(phi, sinTheta, cosTheta);
}
inline float cosineSampleHemispherePDF(const Vec3fa &dir)
{
return dir.z / float(M_PI);
}
inline float cosineSampleHemispherePDF(float cosTheta)
{
return cosTheta / float(M_PI);
}
/*! Cosine weighted hemisphere sampling. Up direction is provided as argument. */
inline Sample3f cosineSampleHemisphere(const float u, const float v, const Vec3fa& N)
{
Vec3fa localDir = cosineSampleHemisphere(Vec2f(u,v));
Sample3f s;
s.v = frame(N) * localDir;
s.pdf = cosineSampleHemispherePDF(localDir);
return s;
}
/// power cosine-weighted sampling of hemisphere oriented along the +z-axis
////////////////////////////////////////////////////////////////////////////////
inline Vec3fa powerCosineSampleHemisphere(const float n, const Vec2f &s)
{
const float phi =float(two_pi) * s.x;
const float cosTheta = pow(s.y, 1.0f / (n + 1.0f));
return cartesian(phi, cosTheta);
}
inline float powerCosineSampleHemispherePDF(const float cosTheta, const float n) // TODO: order of arguments
{
return (n + 1.0f) * (0.5f / float(M_PI)) * pow(cosTheta, n);
}
inline float powerCosineSampleHemispherePDF(const Vec3fa& dir, const float n) // TODO: order of arguments
{
return (n + 1.0f) * (0.5f / float(M_PI)) * pow(dir.z, n);
}
/// sampling of cone of directions oriented along the +z-axis
////////////////////////////////////////////////////////////////////////////////
inline Vec3fa uniformSampleCone(const float cosAngle, const Vec2f &s)
{
const float phi =float(two_pi) * s.x;
const float cosTheta = 1.0f - s.y * (1.0f - cosAngle);
return cartesian(phi, cosTheta);
}
inline float uniformSampleConePDF(const float cosAngle)
{
return rcp(float(two_pi)*(1.0f - cosAngle));
}
inline float _uniformSampleConePDF(const float cosAngle)
{
return rcp(float(two_pi)*(1.0f - cosAngle));
}
/// sampling of disk
////////////////////////////////////////////////////////////////////////////////
inline Vec3fa uniformSampleDisk(const float radius, const Vec2f &s)
{
const float r = sqrtf(s.x) * radius;
const float phi =float(two_pi) * s.y;
const float sinPhi = sinf(phi);
const float cosPhi = cosf(phi);
//sincosf(phi, &sinPhi, &cosPhi);
return Vec3fa(r * cosPhi, r * sinPhi, 0.f);
}
inline float uniformSampleDiskPDF(const float radius)
{
return rcp(float(M_PI) * sqr(radius));
}
inline float _uniformSampleDiskPDF(const float radius)
{
return rcp(float(M_PI) * sqr(radius));
}
/// sampling of triangle abc
////////////////////////////////////////////////////////////////////////////////
inline Vec3fa uniformSampleTriangle(const Vec3fa &a, const Vec3fa &b, const Vec3fa &c, const Vec2f &s)
{
const float su = sqrtf(s.x);
return c + (1.0f - su) * (a-c) + (s.y*su) * (b-c);
}
inline float uniformSampleTrianglePDF(const Vec3fa &a, const Vec3fa &b, const Vec3fa &c)
{
return 2.0f * rcp(abs(length(cross(a-c, b-c))));
}
} // namespace embree
|