1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "lights.h"
#include "../../../include/embree4/rtcore.h"
RTC_NAMESPACE_USE
#include "../math/random_sampler.h"
namespace embree
{
struct Material;
namespace SceneGraph
{
struct Node;
struct MaterialNode;
struct Transformations;
struct TriangleMeshNode;
struct QuadMeshNode;
struct GridMeshNode;
Ref<Node> load(const FileName& fname, bool singleObject = false);
void store(Ref<Node> root, const FileName& fname, bool embedTextures, bool referenceMaterials, bool binaryFormat);
void extend_animation(Ref<Node> node0, Ref<Node> node1);
void optimize_animation(Ref<Node> node0);
void set_motion_vector(Ref<Node> node, const Vec3fa& dP);
void set_motion_vector(Ref<Node> node, const avector<Vec3fa>& motion_vector);
void set_time_range(Ref<SceneGraph::Node> node, const BBox1f& time_range);
void resize_randomly(RandomSampler& sampler, Ref<Node> node, const size_t N);
Ref<Node> convert_triangles_to_quads(Ref<Node> node, float prop);
Ref<Node> convert_triangles_to_quads( Ref<TriangleMeshNode> tmesh);
Ref<Node> convert_quads_to_subdivs(Ref<Node> node);
Ref<Node> my_merge_quads_to_grids(Ref<SceneGraph::Node> node);
Ref<Node> convert_bezier_to_lines(Ref<Node> node);
Ref<Node> convert_bezier_to_bspline(Ref<Node> node);
Ref<Node> convert_bezier_to_hermite(Ref<Node> node);
Ref<Node> convert_bspline_to_bezier(Ref<Node> node);
Ref<Node> convert_flat_to_round_curves(Ref<Node> node);
Ref<Node> convert_round_to_flat_curves(Ref<Node> node);
Ref<Node> convert_quads_to_grids( Ref<QuadMeshNode> qmesh, const unsigned resX, const unsigned resY );
Ref<Node> convert_quads_to_grids( Ref<Node> node, const unsigned resX, const unsigned resY );
Ref<Node> convert_grids_to_quads( Ref<GridMeshNode> gmesh);
Ref<Node> convert_grids_to_quads( Ref<Node> node);
Ref<Node> remove_mblur(Ref<Node> node, bool mblur);
void convert_mblur_to_nonmblur(Ref<Node> node);
extern void (*opaque_geometry_destruction)(void*);
struct Statistics
{
Statistics ()
: numTriangleMeshes(0), numTriangles(0), numTriangleBytes(0),
numQuadMeshes(0), numQuads(0), numQuadBytes(0),
numSubdivMeshes(0), numPatches(0), numSubdivBytes(0),
numCurveSets(0), numCurves(0), numCurveBytes(0),
numGridMeshNodes(0), numGrids(0), numGridBytes(0),
numPointSets(0), numPoints(0), numPointBytes(0),
numTransformNodes(0),
numTransformedObjects(0),
numLights(0),
numCameras(0),
numMaterials(0) {}
void print();
size_t numTriangleMeshes;
size_t numTriangles;
size_t numTriangleBytes;
size_t numQuadMeshes;
size_t numQuads;
size_t numQuadBytes;
size_t numSubdivMeshes;
size_t numPatches;
size_t numSubdivBytes;
size_t numCurveSets;
size_t numCurves;
size_t numCurveBytes;
size_t numGridMeshNodes;
size_t numGrids;
size_t numGridBytes;
size_t numPointSets;
size_t numPoints;
size_t numPointBytes;
size_t numTransformNodes;
size_t numTransformedObjects;
size_t numLights;
size_t numCameras;
size_t numMaterials;
};
struct Node : public RefCount
{
Node (bool closed = false)
: indegree(0), closed(closed), hasLightOrCamera(false), id(-1), geometry(nullptr) {}
Node (const std::string& name)
: name(name), indegree(0), closed(false), id(-1), geometry(nullptr) {}
~Node() {
if (opaque_geometry_destruction)
opaque_geometry_destruction(geometry);
}
/* prints scenegraph */
virtual void print(std::ostream& cout, int depth = 0) = 0;
/* sets material */
virtual void setMaterial(Ref<MaterialNode> material) {};
/* calculates the number of parent nodes pointing to this node */
virtual void calculateInDegree();
/* calculates for each node if its subtree is closed, indegrees have to be calculated first */
virtual bool calculateClosed(bool group_instancing);
/* resets the number of parent nodes pointing to this node */
virtual void resetInDegree();
/* calculates statistics */
virtual void calculateStatistics(Statistics& stat);
/* checks if the node is closed */
__forceinline bool isClosed() const { return closed; }
/* calculates bounding box of node */
virtual BBox3fa bounds() const {
return empty;
}
virtual BBox3fa bounds(size_t i) const {
return empty;
}
/* calculates linear bounding box of node */
virtual LBBox3fa lbounds() const {
return empty;
}
virtual LBBox3fa lbounds(size_t i) const {
return empty;
}
/* calculates number of primitives */
virtual size_t numPrimitives() const {
return 0;
}
Ref<Node> set_motion_vector(const Vec3fa& dP) {
SceneGraph::set_motion_vector(this,dP); return this;
}
Ref<Node> set_motion_vector(const avector<Vec3fa>& motion_vector) {
SceneGraph::set_motion_vector(this,motion_vector); return this;
}
public:
std::string fileName; // when set to some filename the exporter references this file
std::string name; // name of this node
size_t indegree; // number of nodes pointing to us
bool closed; // determines if the subtree may represent an instance
bool hasLightOrCamera;
unsigned int id;
void* geometry;
};
struct Transformations
{
__forceinline Transformations() {}
__forceinline Transformations(OneTy)
: time_range(0.0f,1.0f)
{
spaces.push_back(one);
}
__forceinline Transformations( const BBox1f& time_range, size_t N )
: time_range(time_range), spaces(N) {}
__forceinline Transformations(const AffineSpace3fa& space)
: time_range(0.0f,1.0f)
{
spaces.push_back(space);
}
__forceinline Transformations(const AffineSpace3fa& space0, const AffineSpace3fa& space1)
: time_range(0.0f,1.0f)
{
spaces.push_back(space0);
spaces.push_back(space1);
}
__forceinline Transformations(const avector<AffineSpace3ff>& spaces)
: time_range(0.0f,1.0f), spaces(spaces) { assert(spaces.size()); }
__forceinline size_t size() const {
return spaces.size();
}
__forceinline AffineSpace3ff& operator[] ( const size_t i ) { return spaces[i]; }
__forceinline const AffineSpace3ff& operator[] ( const size_t i ) const { return spaces[i]; }
BBox3fa bounds ( const BBox3fa& cbounds ) const
{
BBox3fa r = empty;
for (size_t i=0; i<spaces.size(); i++)
r.extend(xfmBounds(spaces[i],cbounds));
return r;
}
LBBox3fa lbounds ( const LBBox3fa& cbounds ) const
{
assert(spaces.size());
if (spaces.size() == 1)
{
return LBBox3fa(xfmBounds(spaces[0],cbounds.bounds0),
xfmBounds(spaces[0],cbounds.bounds1));
}
else
{
avector<BBox3fa> bounds(spaces.size());
for (size_t i=0; i<spaces.size(); i++) {
const float f = float(i)/float(spaces.size()-1);
bounds[i] = xfmBounds(spaces[i],cbounds.interpolate(f));
}
return LBBox3fa(bounds);
}
}
void add (const Transformations& other) {
for (size_t i=0; i<other.size(); i++) spaces.push_back(other[i]);
}
static __forceinline bool isIdentity(AffineSpace3ff const& M, bool q)
{
if (M.l.vx.x != 1.f) return false;
if (M.l.vx.y != 0.f) return false;
if (M.l.vx.z != 0.f) return false;
if (q && M.l.vx.w != 0.f) return false;
if (M.l.vy.x != 0.f) return false;
if (M.l.vy.y != 1.f) return false;
if (M.l.vy.z != 0.f) return false;
if (q && M.l.vy.w != 0.f) return false;
if (M.l.vz.x != 0.f) return false;
if (M.l.vz.y != 0.f) return false;
if (M.l.vz.z != 1.f) return false;
if (q && M.l.vz.w != 0.f) return false;
if (M.p.x != 0.f) return false;
if (M.p.y != 0.f) return false;
if (M.p.z != 0.f) return false;
if (q && M.p.w != 1.f) return false;
return true;
}
static __forceinline AffineSpace3ff mul(AffineSpace3ff const& M0, AffineSpace3ff const& M1, bool q0, bool q1, bool& q)
{
q = false;
if (isIdentity(M0, q0)) { q = q1; return M1; }
if (isIdentity(M1, q1)) { q = q0; return M0; }
// simple case non of the transformations is a quaternion
if (q0 == false && q1 == false)
{
return M0 * M1;
}
else if (q0 == true && q1 == true)
{
std::cout << "warning: cannot multiply two quaternion decompositions. will convert to regular transforms and multiply" << std::endl;
return quaternionDecompositionToAffineSpace(M0) * quaternionDecompositionToAffineSpace(M1);
}
else if (q0 == true && q1 == false)
{
AffineSpace3fa S; Quaternion3f Q; Vec3fa T;
quaternionDecomposition(M0, T, Q, S);
S = S * AffineSpace3fa(M1);
if (S.l.vx.y != 0.f || S.l.vx.z != 0 || S.l.vy.z != 0)
std::cout << "warning: cannot multiply quaternion and general transformation matrix. will ignore lower diagonal" << std::endl;
q = true;
return quaternionDecomposition(T, Q, S);
}
else {
if (M0.l.vx.y != 0.f || M0.l.vx.z != 0 || M0.l.vy.z != 0 || M0.l.vy.x != 0.f || M0.l.vz.x != 0 || M0.l.vz.y != 0)
std::cout << "warning: cannot multiply general transformation matrix and quaternion. will only consider translation and diagonal as scale factors" << std::endl;
AffineSpace3ff M = M1;
M.l.vx.y += M0.p.x;
M.l.vx.z += M0.p.y;
M.l.vy.z += M0.p.z;
M.l.vx.x *= M0.l.vx.x;
M.l.vy.y *= M0.l.vy.y;
M.l.vz.z *= M0.l.vz.z;
q = true;
return M;
}
}
friend __forceinline Transformations operator* ( const Transformations& a, const Transformations& b )
{
if (a.size() == 1)
{
Transformations c(intersect(a.time_range,b.time_range),b.size());
for (size_t i=0; i<b.size(); i++) c[i] = mul(a[0], b[i], a.quaternion, b.quaternion, c.quaternion);
return c;
}
else if (b.size() == 1)
{
Transformations c(intersect(a.time_range,b.time_range),a.size());
c.quaternion = a.quaternion || b.quaternion;
for (size_t i=0; i<a.size(); i++) c[i] = mul(a[i], b[0], a.quaternion, b.quaternion, c.quaternion);
return c;
}
else if (a.size() == b.size())
{
Transformations c(intersect(a.time_range,b.time_range),a.size());
c.quaternion = a.quaternion || b.quaternion;
for (size_t i=0; i<a.size(); i++) c[i] = mul(a[i], b[i], a.quaternion, b.quaternion, c.quaternion);
return c;
}
else
THROW_RUNTIME_ERROR("number of transformations does not match");
}
friend __forceinline std::vector<Transformations> operator* ( const std::vector<Transformations>& a, const Transformations& b )
{
std::vector<Transformations> result;
for (size_t i = 0; i < a.size(); ++i) {
result.push_back(a[i] * b);
}
return result;
}
friend __forceinline std::vector<Transformations> operator* ( const Transformations& a, const std::vector<Transformations>& b )
{
return b * a;
}
friend __forceinline std::vector<Transformations> operator* ( const std::vector<Transformations>& a, const std::vector<Transformations>& b )
{
if(a.size() != b.size())
THROW_RUNTIME_ERROR("number of transformations does not match");
std::vector<Transformations> result;
for (size_t i = 0; i < a.size(); ++i) {
result.push_back(a[i] * b[i]);
}
return result;
}
AffineSpace3ff interpolate (const float gtime) const
{
assert(time_range.lower == 0.0f && time_range.upper == 1.0f);
if (spaces.size() == 1) return spaces[0];
/* calculate time segment itime and fractional time ftime */
const int time_segments = int(spaces.size()-1);
const float time = gtime*float(time_segments);
const int itime = clamp(int(floor(time)),0,time_segments-1);
const float ftime = time - float(itime);
return lerp(spaces[itime+0],spaces[itime+1],ftime);
}
public:
BBox1f time_range;
avector<AffineSpace3ff> spaces;
bool quaternion = false;
};
template<typename Vertex>
std::vector<avector<Vertex>> transformMSMBlurBuffer(const std::vector<avector<Vertex>>& positions_in, const Transformations& spaces)
{
std::vector<avector<Vertex>> positions_out;
const size_t num_time_steps = positions_in.size(); assert(num_time_steps);
const size_t num_vertices = positions_in[0].size();
/* if we have only one set of vertices, use transformation to generate more vertex sets */
if (num_time_steps == 1)
{
for (size_t i=0; i<spaces.size(); i++)
{
avector<Vertex> verts(num_vertices);
for (size_t j=0; j<num_vertices; j++) {
verts[j] = xfmPoint(spaces[i],positions_in[0][j]);
verts[j].w = positions_in[0][j].w;
}
positions_out.push_back(std::move(verts));
}
}
/* otherwise transform all vertex sets with interpolated transformation */
else
{
for (size_t t=0; t<num_time_steps; t++)
{
float time = num_time_steps > 1 ? float(t)/float(num_time_steps-1) : 0.0f;
const AffineSpace3ff space = spaces.interpolate(time);
avector<Vertex> verts(num_vertices);
for (size_t i=0; i<num_vertices; i++) {
verts[i] = xfmPoint (space,positions_in[t][i]);
verts[i].w = positions_in[t][i].w;
}
positions_out.push_back(std::move(verts));
}
}
return positions_out;
}
inline std::vector<avector<Vec3fa>> transformMSMBlurVec3faBuffer(const std::vector<avector<Vec3fa>>& positions_in, const Transformations& spaces)
{
std::vector<avector<Vec3fa>> positions_out;
const size_t num_time_steps = positions_in.size(); assert(num_time_steps);
const size_t num_vertices = positions_in[0].size();
/* if we have only one set of vertices, use transformation to generate more vertex sets */
if (num_time_steps == 1)
{
for (size_t i=0; i<spaces.size(); i++)
{
avector<Vec3fa> verts(num_vertices);
for (size_t j=0; j<num_vertices; j++) {
verts[j] = xfmPoint((AffineSpace3fa)spaces[i],positions_in[0][j]);
}
positions_out.push_back(std::move(verts));
}
}
/* otherwise transform all vertex sets with interpolated transformation */
else
{
for (size_t t=0; t<num_time_steps; t++)
{
float time = num_time_steps > 1 ? float(t)/float(num_time_steps-1) : 0.0f;
const AffineSpace3ff space = spaces.interpolate(time);
avector<Vec3fa> verts(num_vertices);
for (size_t i=0; i<num_vertices; i++) {
verts[i] = xfmPoint ((AffineSpace3fa)space,positions_in[t][i]);
}
positions_out.push_back(std::move(verts));
}
}
return positions_out;
}
template<typename Vertex>
std::vector<avector<Vertex>> transformMSMBlurVectorBuffer(const std::vector<avector<Vertex>>& vectors_in, const Transformations& spaces)
{
if (vectors_in.size() == 0)
return vectors_in;
std::vector<avector<Vertex>> vectors_out;
const size_t num_time_steps = vectors_in.size();
const size_t num_vertices = vectors_in[0].size();
/* if we have only one set of vertices, use transformation to generate more vertex sets */
if (num_time_steps == 1)
{
for (size_t i=0; i<spaces.size(); i++)
{
avector<Vertex> vecs(num_vertices);
for (size_t j=0; j<num_vertices; j++) {
vecs[j] = xfmVector(spaces[i],vectors_in[0][j]);
vecs[j].w = vectors_in[0][j].w;
}
vectors_out.push_back(std::move(vecs));
}
}
/* otherwise transform all vertex sets with interpolated transformation */
else
{
for (size_t t=0; t<num_time_steps; t++)
{
float time = num_time_steps > 1 ? float(t)/float(num_time_steps-1) : 0.0f;
const AffineSpace3ff space = spaces.interpolate(time);
avector<Vertex> vecs(num_vertices);
for (size_t i=0; i<num_vertices; i++) {
vecs[i] = xfmVector (space,vectors_in[t][i]);
vecs[i].w = vectors_in[t][i].w;
}
vectors_out.push_back(std::move(vecs));
}
}
return vectors_out;
}
template<typename Vertex>
std::vector<avector<Vertex>> transformMSMBlurVectorVec3faBuffer(const std::vector<avector<Vertex>>& vectors_in, const Transformations& spaces)
{
if (vectors_in.size() == 0)
return vectors_in;
std::vector<avector<Vertex>> vectors_out;
const size_t num_time_steps = vectors_in.size();
const size_t num_vertices = vectors_in[0].size();
/* if we have only one set of vertices, use transformation to generate more vertex sets */
if (num_time_steps == 1)
{
for (size_t i=0; i<spaces.size(); i++)
{
avector<Vertex> vecs(num_vertices);
for (size_t j=0; j<num_vertices; j++) {
vecs[j] = xfmVector((AffineSpace3fa)spaces[i],vectors_in[0][j]);
}
vectors_out.push_back(std::move(vecs));
}
}
/* otherwise transform all vertex sets with interpolated transformation */
else
{
for (size_t t=0; t<num_time_steps; t++)
{
float time = num_time_steps > 1 ? float(t)/float(num_time_steps-1) : 0.0f;
const AffineSpace3ff space = spaces.interpolate(time);
avector<Vertex> vecs(num_vertices);
for (size_t i=0; i<num_vertices; i++) {
vecs[i] = xfmVector ((AffineSpace3fa)space,vectors_in[t][i]);
}
vectors_out.push_back(std::move(vecs));
}
}
return vectors_out;
}
template<typename Vertex>
std::vector<avector<Vertex>> transformMSMBlurNormalBuffer(const std::vector<avector<Vertex>>& normals_in, const Transformations& spaces)
{
if (normals_in.size() == 0)
return normals_in;
std::vector<avector<Vertex>> normals_out;
const size_t num_time_steps = normals_in.size();
const size_t num_vertices = normals_in[0].size();
/* if we have only one set of vertices, use transformation to generate more vertex sets */
if (num_time_steps == 1)
{
for (size_t i=0; i<spaces.size(); i++)
{
avector<Vertex> norms(num_vertices);
for (size_t j=0; j<num_vertices; j++) {
norms[j] = xfmNormal((AffineSpace3fa)spaces[i],normals_in[0][j]);
}
normals_out.push_back(std::move(norms));
}
}
/* otherwise transform all vertex sets with interpolated transformation */
else
{
for (size_t t=0; t<num_time_steps; t++)
{
float time = num_time_steps > 1 ? float(t)/float(num_time_steps-1) : 0.0f;
const AffineSpace3ff space = spaces.interpolate(time);
avector<Vertex> norms(num_vertices);
for (size_t i=0; i<num_vertices; i++) {
norms[i] = xfmNormal ((AffineSpace3fa)space,normals_in[t][i]);
}
normals_out.push_back(std::move(norms));
}
}
return normals_out;
}
struct PerspectiveCameraData
{
PerspectiveCameraData()
: from(1,0,0), to(0,0,0), up(0,1,0), fov(30) {}
PerspectiveCameraData (const Vec3fa& from, const Vec3fa& to, const Vec3fa& up, const float fov)
: from(from), to(to), up(up), fov(fov) {}
PerspectiveCameraData (const PerspectiveCameraData& other, const AffineSpace3fa& space)
: from(xfmPoint(space,other.from)), to(xfmPoint(space,other.to)), up(xfmVector(space,other.up)), fov(other.fov) {}
friend PerspectiveCameraData lerp(const PerspectiveCameraData& a, const PerspectiveCameraData& b, const float t)
{
const Vec3fa from = embree::lerp(a.from, b.from, t);
const Vec3fa to = embree::lerp(a.to , b.to , t);
const Vec3fa up = embree::lerp(a.up , b.up , t);
const float fov = embree::lerp(a.fov , b.fov , t);
return PerspectiveCameraData(from,to,up,fov);
}
public:
Vec3fa from; //!< position of camera
Vec3fa to; //!< look at point
Vec3fa up; //!< up vector
float fov; //!< vertical field of view
};
struct PerspectiveCameraNode : public Node
{
ALIGNED_STRUCT_(16);
PerspectiveCameraNode (std::string name = "")
: Node(name) {}
PerspectiveCameraNode (const Vec3fa& from, const Vec3fa& to, const Vec3fa& up, const float fov)
: data(from, to, up, fov) {}
PerspectiveCameraNode (const Ref<PerspectiveCameraNode>& other, const AffineSpace3fa& space, const std::string& id = "")
: Node(id), data(other->data,space) {}
virtual bool isAnimated() const {
return false;
}
virtual PerspectiveCameraData get(float time) const {
return data;
}
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual bool calculateClosed(bool group_instancing);
public:
PerspectiveCameraData data;
};
struct AnimatedPerspectiveCameraNode : public PerspectiveCameraNode
{
AnimatedPerspectiveCameraNode (std::vector<Ref<PerspectiveCameraNode>>&& cameras, BBox1f time_range, const std::string& id = "")
: time_range(time_range), cameras(cameras) {}
AnimatedPerspectiveCameraNode (const Ref<AnimatedPerspectiveCameraNode>& other, const AffineSpace3fa& space, const std::string& id)
: PerspectiveCameraNode(id), time_range(other->time_range)
{
cameras.resize(other->size());
for (size_t i=0; i<other->size(); i++)
cameras[i] = new PerspectiveCameraNode(other->cameras[i],space);
}
virtual bool isAnimated() const {
return true;
}
virtual PerspectiveCameraData get(float time) const
{
time = frac((time-time_range.lower)/time_range.size());
time = (cameras.size()-1)*time;
int itime = (int)floor(time);
itime = min(max(itime,0),(int)cameras.size()-2);
float ftime = time - (float)itime;
return lerp(cameras[itime+0]->get(time), cameras[itime+1]->get(time), ftime);
}
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual bool calculateClosed(bool group_instancing);
size_t size() const { return cameras.size(); }
public:
BBox1f time_range;
std::vector<Ref<PerspectiveCameraNode>> cameras;
};
struct TransformNode : public Node
{
ALIGNED_STRUCT_(16);
TransformNode (const AffineSpace3fa& xfm, const Ref<Node>& child)
: spaces((AffineSpace3ff)xfm), child(child) {}
TransformNode (const AffineSpace3fa& xfm0, const AffineSpace3fa& xfm1, const Ref<Node>& child)
: spaces((AffineSpace3ff)xfm0,(AffineSpace3ff)xfm1), child(child) {}
TransformNode (const avector<AffineSpace3ff>& spaces, const Ref<Node>& child)
: spaces(spaces), child(child) {}
TransformNode(const Transformations& spaces, const Ref<Node>& child)
: spaces(spaces), child(child) {}
virtual void setMaterial(Ref<MaterialNode> material) {
child->setMaterial(material);
}
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual void calculateInDegree();
virtual bool calculateClosed(bool group_instancing);
virtual void resetInDegree();
virtual BBox3fa bounds() const {
return spaces.bounds(child->bounds());
}
virtual LBBox3fa lbounds() const {
return spaces.lbounds(child->lbounds());
}
virtual size_t numPrimitives() const {
return child->numPrimitives();
}
virtual AffineSpace3ff get(float time) const
{
if (spaces.size() <= 1) return spaces[0];
int numTimeSteps = spaces.size();
BBox1f time_range = spaces.time_range;
time = frac((time-time_range.lower)/time_range.size());
time = (numTimeSteps-1)*time;
int itime = (int)floor(time);
itime = min(max(itime,0),(int)numTimeSteps-2);
float ftime = time - (float)itime;
const AffineSpace3ff xfm0 = spaces[itime+0];
const AffineSpace3ff xfm1 = spaces[itime+1];
const AffineSpace3ff xfm = lerp(xfm0,xfm1,ftime);
return xfm;
}
public:
Transformations spaces;
Ref<Node> child;
};
struct MultiTransformNode : public Node
{
ALIGNED_STRUCT_(16);
MultiTransformNode (const avector<AffineSpace3fa>& xfm, const Ref<Node>& child)
: child(child)
{
for (const AffineSpace3fa& space : xfm) {
spaces.push_back(Transformations(space));
}
}
MultiTransformNode (const avector<AffineSpace3fa>& xfm0, const avector<AffineSpace3fa>& xfm1, const Ref<Node>& child)
: child(child)
{
assert(xfm0.size() == xfm1.size());
for (size_t i = 0; i < xfm0.size(); ++i) {
spaces.push_back(Transformations(xfm0[i], xfm1[i]));
}
}
MultiTransformNode (const avector<avector<AffineSpace3ff>>& spaces_in, const Ref<Node>& child)
: child(child)
{
assert(spaces_in.size() > 0);
const size_t time_steps = spaces_in.size();
const size_t array_size = spaces_in[0].size();
for (size_t i = 0; i < array_size; ++i) {
avector<AffineSpace3ff> s;
for (size_t j = 0; j < time_steps; ++j) {
s.push_back(spaces_in[j][i]);
}
spaces.push_back(Transformations(s));
}
}
MultiTransformNode(const std::vector<Transformations>& spaces, const Ref<Node>& child)
: spaces(spaces), child(child) {}
virtual void setMaterial(Ref<MaterialNode> material) {
child->setMaterial(material);
}
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual void calculateInDegree();
virtual bool calculateClosed(bool group_instancing);
virtual void resetInDegree();
virtual BBox3fa bounds(size_t i) const {
return spaces[i].bounds(child->bounds());
}
virtual LBBox3fa lbounds(size_t i) const {
return spaces[i].lbounds(child->lbounds());
}
virtual size_t numPrimitives() const {
return child->numPrimitives();
}
virtual AffineSpace3ff get(size_t i, float time) const
{
if (spaces[i].size() <= 1) return spaces[i][0];
int numTimeSteps = spaces[i].size();
BBox1f time_range = spaces[i].time_range;
time = frac((time-time_range.lower)/time_range.size());
time = (numTimeSteps-1)*time;
int itime = (int)floor(time);
itime = min(max(itime,0),(int)numTimeSteps-2);
float ftime = time - (float)itime;
const AffineSpace3ff xfm0 = spaces[i][itime+0];
const AffineSpace3ff xfm1 = spaces[i][itime+1];
const AffineSpace3ff xfm = lerp(xfm0,xfm1,ftime);
return xfm;
}
public:
std::vector<Transformations> spaces;
Ref<Node> child;
};
struct GroupNode : public Node
{
GroupNode (const size_t N = 0) {
children.resize(N);
}
GroupNode (std::vector<Ref<Node>>& children)
: children(children) {}
size_t size() const {
return children.size();
}
void add(const Ref<Node>& node) {
if (node) children.push_back(node);
}
void set(const size_t i, const Ref<Node>& node) {
children[i] = node;
}
Ref<Node> child ( size_t i ) const {
return children[i];
}
virtual BBox3fa bounds() const
{
BBox3fa b = empty;
for (auto& c : children) b.extend(c->bounds());
return b;
}
virtual LBBox3fa lbounds() const
{
LBBox3fa b = empty;
for (auto& c : children) b.extend(c->lbounds());
return b;
}
virtual size_t numPrimitives() const
{
size_t n = 0;
for (auto& child : children) n += child->numPrimitives();
return n;
}
void triangles_to_quads(float prop = inf)
{
for (size_t i=0; i<children.size(); i++)
children[i] = convert_triangles_to_quads(children[i],prop);
}
void quads_to_grids(unsigned int resX, unsigned int resY)
{
for (size_t i=0; i<children.size(); i++)
children[i] = convert_quads_to_grids(children[i],resX, resY);
}
void grids_to_quads()
{
for (size_t i=0; i<children.size(); i++)
children[i] = convert_grids_to_quads(children[i]);
}
void quads_to_subdivs()
{
for (size_t i=0; i<children.size(); i++)
children[i] = convert_quads_to_subdivs(children[i]);
}
void bezier_to_lines()
{
for (size_t i=0; i<children.size(); i++)
children[i] = convert_bezier_to_lines(children[i]);
}
void flat_to_round_curves()
{
for (size_t i=0; i<children.size(); i++)
children[i] = convert_flat_to_round_curves(children[i]);
}
void round_to_flat_curves()
{
for (size_t i=0; i<children.size(); i++)
children[i] = convert_round_to_flat_curves(children[i]);
}
void bezier_to_bspline()
{
for (size_t i=0; i<children.size(); i++)
children[i] = convert_bezier_to_bspline(children[i]);
}
void bezier_to_hermite()
{
for (size_t i=0; i<children.size(); i++)
children[i] = convert_bezier_to_hermite(children[i]);
}
void bspline_to_bezier()
{
for (size_t i=0; i<children.size(); i++)
children[i] = convert_bspline_to_bezier(children[i]);
}
void merge_quads_to_grids()
{
for (size_t i=0; i<children.size(); i++)
children[i] = my_merge_quads_to_grids(children[i]);
}
void remove_mblur(bool mblur)
{
for (size_t i=0; i<children.size(); i++)
SceneGraph::remove_mblur(children[i], mblur);
}
virtual void setMaterial(Ref<MaterialNode> material) {
for (auto& child : children) child->setMaterial(material);
}
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual void calculateInDegree();
virtual bool calculateClosed(bool group_instancing);
virtual void resetInDegree();
public:
std::vector<Ref<Node> > children;
};
struct LightNode : public Node
{
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual bool calculateClosed(bool group_instancing);
virtual LightType getType() const = 0;
virtual Ref<LightNode> transform(const AffineSpace3fa& space) const = 0;
virtual Ref<LightNode> lerp(const Ref<LightNode>& light1_in, float f) const = 0;
virtual Ref<LightNode> get(float time) const = 0;
};
template<typename Light>
struct LightNodeImpl : public LightNode
{
ALIGNED_STRUCT_(16);
LightNodeImpl (const Light& light)
: light(light) {}
virtual LightType getType() const {
return light.getType();
}
virtual Ref<LightNode> transform(const AffineSpace3fa& space) const {
return new LightNodeImpl(light.transform(space));
}
virtual Ref<LightNode> get(float time) const {
return (LightNode*) this;
}
virtual Ref<LightNode> lerp(const Ref<LightNode>& light1_in, float f) const
{
const Ref<LightNodeImpl<Light>> light1 = light1_in.dynamicCast<LightNodeImpl<Light>>();
assert(light1);
return new LightNodeImpl(Light::lerp(light,light1->light,f));
}
Light light;
};
struct AnimatedLightNode : public LightNode
{
AnimatedLightNode (const std::vector<Ref<LightNode>>&& lights, BBox1f time_range)
: lights(lights), time_range(time_range) {}
virtual LightType getType() const {
return lights[0]->getType();
}
virtual Ref<LightNode> transform(const AffineSpace3fa& space) const
{
std::vector<Ref<LightNode>> xfm_lights(lights.size());
for (size_t i=0; i<lights.size(); i++)
xfm_lights[i] = lights[i]->transform(space);
return new AnimatedLightNode(std::move(xfm_lights), time_range);
}
virtual Ref<LightNode> get(float time) const
{
time = frac((time-time_range.lower)/time_range.size());
time = (lights.size()-1)*time;
int itime = (int)floor(time);
itime = min(max(itime,0),(int)lights.size()-2);
float ftime = time - (float)itime;
Ref<LightNode> light0 = lights[itime+0]->get(time);
Ref<LightNode> light1 = lights[itime+1]->get(time);
return light0->lerp(light1,ftime);
}
virtual Ref<LightNode> lerp(const Ref<LightNode>& light1_in, float f) const {
assert(false); return nullptr;
}
public:
std::vector<Ref<LightNode>> lights;
BBox1f time_range;
};
struct MaterialNode : public Node
{
ALIGNED_STRUCT_USM_(16)
MaterialNode(const std::string& name = "")
: Node(name) {}
virtual Material* material() = 0;
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
};
/*! Mesh. */
struct TriangleMeshNode : public Node
{
typedef Vec3fa Vertex;
struct Triangle
{
public:
Triangle() {}
Triangle (unsigned v0, unsigned v1, unsigned v2)
: v0(v0), v1(v1), v2(v2) {}
public:
unsigned v0, v1, v2;
};
public:
TriangleMeshNode (const avector<Vertex>& positions_in,
const avector<Vertex>& normals_in,
const std::vector<Vec2f>& texcoords,
const std::vector<Triangle>& triangles,
Ref<MaterialNode> material)
: Node(true), time_range(0.0f,1.0f), texcoords(texcoords), triangles(triangles), material(material)
{
positions.push_back(positions_in);
normals.push_back(normals_in);
}
TriangleMeshNode (Ref<MaterialNode> material, const BBox1f time_range = BBox1f(0,1), size_t numTimeSteps = 0)
: Node(true), time_range(time_range), material(material)
{
for (size_t i=0; i<numTimeSteps; i++)
positions.push_back(avector<Vertex>());
}
TriangleMeshNode (Ref<SceneGraph::TriangleMeshNode> imesh, const Transformations& spaces)
: Node(true),
time_range(imesh->time_range),
positions(transformMSMBlurVec3faBuffer(imesh->positions,spaces)),
normals(transformMSMBlurNormalBuffer(imesh->normals,spaces)),
texcoords(imesh->texcoords), triangles(imesh->triangles), material(imesh->material) {}
virtual void setMaterial(Ref<MaterialNode> material) {
this->material = material;
}
virtual BBox3fa bounds() const
{
BBox3fa b = empty;
for (const auto& p : positions)
for (auto& x : p)
b.extend(x);
return b;
}
virtual LBBox3fa lbounds() const
{
avector<BBox3fa> bboxes(positions.size());
for (size_t t=0; t<positions.size(); t++) {
BBox3fa b = empty;
for (auto& x : positions[t]) b.extend(x);
bboxes[t] = b;
}
return LBBox3fa(bboxes);
}
virtual size_t numPrimitives() const {
return triangles.size();
}
size_t numVertices() const {
assert(positions.size());
return positions[0].size();
}
size_t numTimeSteps() const {
return positions.size();
}
size_t numBytes() const {
return numPrimitives()*sizeof(Triangle) + numVertices()*numTimeSteps()*sizeof(Vertex);
}
void verify() const;
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual void calculateInDegree();
virtual void resetInDegree();
public:
BBox1f time_range;
std::vector<avector<Vertex>> positions;
std::vector<avector<Vertex>> normals;
std::vector<Vec2f> texcoords;
std::vector<Triangle> triangles;
Ref<MaterialNode> material;
};
/*! Mesh. */
struct QuadMeshNode : public Node
{
typedef Vec3fa Vertex;
struct Quad
{
public:
Quad() {}
Quad (unsigned int v0, unsigned int v1, unsigned int v2, unsigned int v3)
: v0(v0), v1(v1), v2(v2), v3(v3) {}
public:
unsigned int v0, v1, v2, v3;
};
public:
QuadMeshNode (Ref<MaterialNode> material, const BBox1f time_range = BBox1f(0,1), size_t numTimeSteps = 0 )
: Node(true), time_range(time_range), material(material)
{
for (size_t i=0; i<numTimeSteps; i++)
positions.push_back(avector<Vertex>());
}
QuadMeshNode (Ref<SceneGraph::QuadMeshNode> imesh, const Transformations& spaces)
: Node(true),
time_range(imesh->time_range),
positions(transformMSMBlurVec3faBuffer(imesh->positions,spaces)),
normals(transformMSMBlurNormalBuffer(imesh->normals,spaces)),
texcoords(imesh->texcoords), quads(imesh->quads), material(imesh->material) {}
virtual void setMaterial(Ref<MaterialNode> material) {
this->material = material;
}
virtual BBox3fa bounds() const
{
BBox3fa b = empty;
for (const auto& p : positions)
for (auto& x : p)
b.extend(x);
return b;
}
virtual LBBox3fa lbounds() const
{
avector<BBox3fa> bboxes(positions.size());
for (size_t t=0; t<positions.size(); t++) {
BBox3fa b = empty;
for (auto& x : positions[t]) b.extend(x);
bboxes[t] = b;
}
return LBBox3fa(bboxes);
}
virtual size_t numPrimitives() const {
return quads.size();
}
size_t numVertices() const {
assert(positions.size());
return positions[0].size();
}
size_t numTimeSteps() const {
return positions.size();
}
size_t numBytes() const {
return numPrimitives()*sizeof(Quad) + numVertices()*numTimeSteps()*sizeof(Vertex);
}
void verify() const;
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual void calculateInDegree();
virtual void resetInDegree();
public:
BBox1f time_range;
std::vector<avector<Vertex>> positions;
std::vector<avector<Vertex>> normals;
std::vector<Vec2f> texcoords;
std::vector<Quad> quads;
Ref<MaterialNode> material;
};
/*! Subdivision Mesh. */
struct SubdivMeshNode : public Node
{
typedef Vec3fa Vertex;
SubdivMeshNode (Ref<MaterialNode> material, const BBox1f time_range = BBox1f(0,1), size_t numTimeSteps = 0)
: Node(true),
time_range(time_range),
position_subdiv_mode(RTC_SUBDIVISION_MODE_SMOOTH_BOUNDARY),
normal_subdiv_mode(RTC_SUBDIVISION_MODE_SMOOTH_BOUNDARY),
texcoord_subdiv_mode(RTC_SUBDIVISION_MODE_SMOOTH_BOUNDARY),
material(material), tessellationRate(2.0f)
{
for (size_t i=0; i<numTimeSteps; i++)
positions.push_back(avector<Vertex>());
zero_pad_arrays();
}
SubdivMeshNode (Ref<SceneGraph::SubdivMeshNode> imesh, const Transformations& spaces)
: Node(true),
time_range(imesh->time_range),
positions(transformMSMBlurVec3faBuffer(imesh->positions,spaces)),
normals(transformMSMBlurNormalBuffer(imesh->normals,spaces)),
texcoords(imesh->texcoords),
position_indices(imesh->position_indices),
normal_indices(imesh->normal_indices),
texcoord_indices(imesh->texcoord_indices),
position_subdiv_mode(imesh->position_subdiv_mode),
normal_subdiv_mode(imesh->normal_subdiv_mode),
texcoord_subdiv_mode(imesh->texcoord_subdiv_mode),
verticesPerFace(imesh->verticesPerFace),
holes(imesh->holes),
edge_creases(imesh->edge_creases),
edge_crease_weights(imesh->edge_crease_weights),
vertex_creases(imesh->vertex_creases),
vertex_crease_weights(imesh->vertex_crease_weights),
material(imesh->material),
tessellationRate(imesh->tessellationRate)
{
zero_pad_arrays();
}
void zero_pad_arrays()
{
if (texcoords.size()) { // zero pad to 16 bytes
texcoords.reserve(texcoords.size()+1);
texcoords.data()[texcoords.size()] = zero;
}
}
virtual void setMaterial(Ref<MaterialNode> material) {
this->material = material;
}
virtual BBox3fa bounds() const
{
BBox3fa b = empty;
for (const auto& p : positions)
for (auto& x : p)
b.extend(x);
return b;
}
virtual LBBox3fa lbounds() const
{
avector<BBox3fa> bboxes(positions.size());
for (size_t t=0; t<positions.size(); t++) {
BBox3fa b = empty;
for (auto& x : positions[t]) b.extend(x);
bboxes[t] = b;
}
return LBBox3fa(bboxes);
}
virtual size_t numPrimitives() const {
return verticesPerFace.size();
}
size_t numPositions() const {
assert(positions.size());
return positions[0].size();
}
size_t numNormals() const {
if (normals.size()) return normals[0].size();
else return 0;
}
size_t numEdges() const {
return position_indices.size();
}
size_t numTimeSteps() const {
return positions.size();
}
size_t numBytes() const {
return numPrimitives()*sizeof(unsigned) + numEdges()*sizeof(unsigned) + numPositions()*numTimeSteps()*sizeof(Vertex);
}
void verify() const;
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual void calculateInDegree();
virtual void resetInDegree();
public:
BBox1f time_range; //!< geometry time range for motion blur
std::vector<avector<Vertex>> positions; //!< vertex positions for multiple timesteps
std::vector<avector<Vertex>> normals; //!< vertex normals
std::vector<Vec2f> texcoords; //!< face texture coordinates
std::vector<unsigned> position_indices; //!< position indices for all faces
std::vector<unsigned> normal_indices; //!< normal indices for all faces
std::vector<unsigned> texcoord_indices; //!< texcoord indices for all faces
RTCSubdivisionMode position_subdiv_mode;
RTCSubdivisionMode normal_subdiv_mode;
RTCSubdivisionMode texcoord_subdiv_mode;
std::vector<unsigned> verticesPerFace; //!< number of indices of each face
std::vector<unsigned> holes; //!< face ID of holes
std::vector<Vec2i> edge_creases; //!< index pairs for edge crease
std::vector<float> edge_crease_weights; //!< weight for each edge crease
std::vector<unsigned> vertex_creases; //!< indices of vertex creases
std::vector<float> vertex_crease_weights; //!< weight for each vertex crease
Ref<MaterialNode> material;
float tessellationRate;
};
/*! Hair Set. */
struct HairSetNode : public Node
{
typedef Vec3ff Vertex;
struct Hair
{
public:
Hair () {}
Hair (unsigned vertex, unsigned id)
: vertex(vertex), id(id) {}
public:
unsigned vertex, id; //!< index of first control point and hair ID
};
public:
HairSetNode (RTCGeometryType type, Ref<MaterialNode> material, const BBox1f time_range = BBox1f(0,1), size_t numTimeSteps = 0)
: Node(true), time_range(time_range), type(type), material(material), tessellation_rate(4)
{
for (size_t i=0; i<numTimeSteps; i++)
positions.push_back(avector<Vertex>());
}
HairSetNode (const avector<Vertex>& positions_in, const std::vector<Hair>& hairs, Ref<MaterialNode> material, RTCGeometryType type)
: Node(true), time_range(0.0f,1.0f), type(type), hairs(hairs), material(material), tessellation_rate(4)
{
positions.push_back(positions_in);
}
HairSetNode (Ref<SceneGraph::HairSetNode> imesh, const Transformations& spaces)
: Node(true),
time_range(imesh->time_range),
type(imesh->type),
positions(transformMSMBlurBuffer(imesh->positions,spaces)),
normals(transformMSMBlurNormalBuffer(imesh->normals,spaces)),
tangents(transformMSMBlurVectorBuffer(imesh->tangents,spaces)),
dnormals(transformMSMBlurVectorVec3faBuffer(imesh->dnormals,spaces)),
hairs(imesh->hairs), flags(imesh->flags), material(imesh->material), tessellation_rate(imesh->tessellation_rate) {}
virtual void setMaterial(Ref<MaterialNode> material) {
this->material = material;
}
virtual BBox3fa bounds() const
{
BBox3fa b = empty;
for (const auto& p : positions)
for (auto& x : p)
b.extend(x);
return b;
}
virtual LBBox3fa lbounds() const
{
avector<BBox3fa> bboxes(positions.size());
for (size_t t=0; t<positions.size(); t++) {
BBox3fa b = empty;
for (auto& x : positions[t]) b.extend(x);
bboxes[t] = b;
}
return LBBox3fa(bboxes);
}
virtual size_t numPrimitives() const {
return hairs.size();
}
size_t numVertices() const {
assert(positions.size());
return positions[0].size();
}
size_t numTimeSteps() const {
return positions.size();
}
size_t numBytes() const {
return numPrimitives()*sizeof(Hair) + numVertices()*numTimeSteps()*sizeof(Vertex);
}
void convert_bezier_to_bspline();
void convert_bspline_to_bezier();
void convert_bezier_to_hermite();
void compact_vertices();
void verify() const;
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual void calculateInDegree();
virtual void resetInDegree();
public:
BBox1f time_range; //!< geometry time range for motion blur
RTCGeometryType type; //!< type of curve
std::vector<avector<Vertex>> positions; //!< hair control points (x,y,z,r) for multiple timesteps
std::vector<avector<Vec3fa>> normals; //!< hair control normals (nx,ny,nz) for multiple timesteps
std::vector<avector<Vertex>> tangents; //!< hair control tangents (tx,ty,tz,tr) for multiple timesteps
std::vector<avector<Vec3fa>> dnormals; //!< hair control normal derivatives (nx,ny,nz) for multiple timesteps
std::vector<Hair> hairs; //!< list of hairs
std::vector<unsigned char> flags; //!< left, right end cap flags
Ref<MaterialNode> material;
unsigned tessellation_rate;
};
/*! Point Set. */
struct PointSetNode : public Node
{
typedef Vec3ff Vertex;
public:
PointSetNode (RTCGeometryType type, Ref<MaterialNode> material, const BBox1f time_range = BBox1f(0,1), size_t numTimeSteps = 0)
: Node(true), time_range(time_range), type(type), material(material)
{
for (size_t i=0; i<numTimeSteps; i++)
positions.push_back(avector<Vertex>());
}
PointSetNode (const avector<Vertex>& positions_in, Ref<MaterialNode> material, RTCGeometryType type)
: Node(true), time_range(0.0f, 1.0f), type(type), material(material)
{
positions.push_back(positions_in);
}
PointSetNode (Ref<SceneGraph::PointSetNode> imesh, const Transformations& spaces)
: Node(true), time_range(imesh->time_range), type(imesh->type), positions(transformMSMBlurBuffer(imesh->positions,spaces)),
normals(transformMSMBlurNormalBuffer(imesh->normals,spaces)),
material(imesh->material) {}
virtual void setMaterial(Ref<MaterialNode> material) {
this->material = material;
}
virtual BBox3fa bounds() const
{
BBox3fa b = empty;
for (const auto& p : positions)
for (auto& x : p)
b.extend(x);
return b;
}
virtual LBBox3fa lbounds() const
{
avector<BBox3fa> bboxes(positions.size());
for (size_t t=0; t<positions.size(); t++) {
BBox3fa b = empty;
for (auto& x : positions[t])
b.extend(x);
bboxes[t] = b;
}
return LBBox3fa(bboxes);
}
virtual size_t numPrimitives() const {
return numVertices();
}
size_t numVertices() const {
assert(positions.size());
return positions[0].size();
}
size_t numTimeSteps() const {
return positions.size();
}
size_t numBytes() const {
return numVertices()*numTimeSteps()*sizeof(Vertex);
}
void verify() const;
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual void calculateInDegree();
virtual void resetInDegree();
public:
BBox1f time_range; //!< geometry time range for motion blur
RTCGeometryType type; //!< type of point
std::vector<avector<Vertex>> positions; //!< point control points (x,y,z,r) for multiple timesteps
std::vector<avector<Vec3fa>> normals; //!< point control normals (nx,ny,nz) for multiple timesteps (oriented only)
Ref<MaterialNode> material;
};
struct GridMeshNode : public Node
{
typedef Vec3fa Vertex;
static const unsigned int GRID_RES_MAX = 0x7FFF;
struct Grid
{
public:
Grid() {}
Grid (unsigned int startVtx, unsigned int lineStride, unsigned int resX_in, unsigned int resY_in)
: startVtx(startVtx), lineStride(lineStride), resX(resX_in), resY(resY_in)
{
assert(resX_in <= GRID_RES_MAX);
assert(resY_in <= GRID_RES_MAX);
}
public:
unsigned int startVtx;
unsigned int lineStride;
unsigned short resX,resY;
};
public:
GridMeshNode (Ref<MaterialNode> material, const BBox1f time_range = BBox1f(0,1), size_t numTimeSteps = 0)
: Node(true), time_range(time_range), material(material)
{
for (size_t i=0; i<numTimeSteps; i++)
positions.push_back(avector<Vertex>());
}
GridMeshNode (Ref<SceneGraph::GridMeshNode> imesh, const Transformations& spaces)
: Node(true),
time_range(imesh->time_range),
positions(transformMSMBlurVec3faBuffer(imesh->positions,spaces)),
grids(imesh->grids), material(imesh->material) {}
virtual void setMaterial(Ref<MaterialNode> material) {
this->material = material;
}
virtual BBox3fa bounds() const
{
BBox3fa b = empty;
for (const auto& p : positions)
for (auto& x : p)
b.extend(x);
return b;
}
virtual LBBox3fa lbounds() const
{
avector<BBox3fa> bboxes(positions.size());
for (size_t t=0; t<positions.size(); t++) {
BBox3fa b = empty;
for (auto& x : positions[t]) b.extend(x);
bboxes[t] = b;
}
return LBBox3fa(bboxes);
}
virtual size_t numPrimitives() const {
return grids.size();
}
size_t numVertices() const {
assert(positions.size());
return positions[0].size();
}
size_t numTimeSteps() const {
return positions.size();
}
size_t numBytes() const {
return numPrimitives()*sizeof(Grid) + numVertices()*numTimeSteps()*sizeof(Vertex);
}
void verify() const;
virtual void print(std::ostream& cout, int depth);
virtual void calculateStatistics(Statistics& stat);
virtual void calculateInDegree();
virtual void resetInDegree();
public:
BBox1f time_range;
std::vector<avector<Vertex>> positions;
std::vector<Grid> grids;
Ref<MaterialNode> material;
};
enum InstancingMode { INSTANCING_NONE, INSTANCING_GEOMETRY, INSTANCING_GROUP, INSTANCING_FLATTENED, INSTANCING_MULTI_LEVEL };
Ref<Node> flatten(Ref<Node> node, InstancingMode mode);
Ref<GroupNode> flatten(Ref<GroupNode> node, InstancingMode mode);
Statistics calculateStatistics(Ref<Node> node);
enum CurveSubtype
{
ROUND_CURVE,
FLAT_CURVE
};
enum PointSubtype
{
SPHERE,
DISC,
ORIENTED_DISC
};
}
}
#include "materials.h"
|