1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "curve_geometry_device.isph"
#include "../common/tutorial/optics.isph"
/* all features required by this tutorial */
#define FEATURE_MASK \
RTC_FEATURE_FLAG_TRIANGLE | \
RTC_FEATURE_FLAG_CONE_LINEAR_CURVE | \
RTC_FEATURE_FLAG_ROUND_LINEAR_CURVE | \
RTC_FEATURE_FLAG_FLAT_BSPLINE_CURVE | \
RTC_FEATURE_FLAG_ROUND_BSPLINE_CURVE | \
RTC_FEATURE_FLAG_NORMAL_ORIENTED_BSPLINE_CURVE | \
RTC_FEATURE_FLAG_FLAT_LINEAR_CURVE | \
RTC_FEATURE_FLAG_FLAT_CATMULL_ROM_CURVE | \
RTC_FEATURE_FLAG_ROUND_CATMULL_ROM_CURVE | \
RTC_FEATURE_FLAG_NORMAL_ORIENTED_CATMULL_ROM_CURVE
/* scene data */
RTCScene g_scene = NULL;
uniform TutorialData data;
Vec3f interpolate_linear(const uniform TutorialData& data, unsigned int primID, float u)
{
const Vec3fa c0 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+1];
const Vec3fa c1 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+2];
return make_Vec3f(c0*(1.0f-u) + c1*u);
}
Vec3f interpolate_bspline(const uniform TutorialData& data, unsigned int primID, float u)
{
const Vec3fa c0 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+0];
const Vec3fa c1 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+1];
const Vec3fa c2 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+2];
const Vec3fa c3 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+3];
const float t = u;
const float s = 1.0f - u;
const float n0 = s*s*s;
const float n1 = (4.0f*(s*s*s)+(t*t*t)) + (12.0f*((s*t)*s) + 6.0f*((t*s)*t));
const float n2 = (4.0f*(t*t*t)+(s*s*s)) + (12.0f*((t*s)*t) + 6.0f*((s*t)*s));
const float n3 = t*t*t;
return make_Vec3f((1.0f/6.0f)*(n0*c0 + n1*c1 + n2*c2 + n3*c3));
}
Vec3f interpolate_catmull_rom(const uniform TutorialData& data, unsigned int primID, float u)
{
const Vec3fa c0 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+0];
const Vec3fa c1 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+1];
const Vec3fa c2 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+2];
const Vec3fa c3 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+3];
const float t = u;
const float s = 1.0f - u;
const float n0 = - t * s * s;
const float n1 = 2.0f + t * t * (3.0f * t - 5.0f);
const float n2 = 2.0f + s * s * (3.0f * s - 5.0f);
const float n3 = - s * t * t;
return make_Vec3f(0.5f*(n0*c0 + n1*c1 + n2*c2 + n3*c3));
}
/* add hair geometry */
uniform unsigned int addCurve (RTCScene scene, uniform RTCGeometryType gtype, const uniform Vec4f& pos)
{
RTCGeometry geom = rtcNewGeometry (g_device, gtype);
rtcSetGeometryVertexAttributeCount(geom,1);
if (gtype == RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE || gtype == RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE || gtype == RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE)
rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, data.hair_indices_linear,0, sizeof(uniform unsigned int), NUM_CURVES);
else
rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, data.hair_indices, 0, sizeof(uniform unsigned int), NUM_CURVES);
uniform Vec4f* uniform verts = (uniform Vec4f* uniform)rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, sizeof(uniform Vec4f), NUM_VERTICES);
for (uniform int i = 0; i < NUM_VERTICES; i++) {
verts[i] = pos + data.hair_vertices[i];
}
if (gtype == RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE ||
gtype == RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE ||
gtype == RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE) {
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_NORMAL, 0, RTC_FORMAT_FLOAT3, data.hair_normals, 0, sizeof(uniform Vec3fa), NUM_VERTICES);
}
if (gtype == RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE || gtype == RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE) {
rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_FLAGS, 0, RTC_FORMAT_UCHAR, data.hair_flags_linear, 0, sizeof(uniform int8), NUM_CURVES);
}
rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE, 0, RTC_FORMAT_FLOAT3, data.hair_vertex_colors, 0, sizeof(uniform Vec3fa), NUM_VERTICES);
rtcCommitGeometry(geom);
uniform unsigned int geomID = rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* adds a ground plane to the scene */
uniform unsigned int addGroundPlane (RTCScene scene_i)
{
/* create a triangulated plane with 2 triangles and 4 vertices */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
uniform Vertex* uniform vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(uniform Vertex), 4);
vertices[0].x = -15; vertices[0].y = -2; vertices[0].z = -15;
vertices[1].x = -15; vertices[1].y = -2; vertices[1].z = +15;
vertices[2].x = +15; vertices[2].y = -2; vertices[2].z = -15;
vertices[3].x = +15; vertices[3].y = -2; vertices[3].z = +15;
/* set triangles */
uniform Triangle* uniform triangles = (uniform Triangle* uniform) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(uniform Triangle), 2);
triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
rtcCommitGeometry(geom);
uniform unsigned int geomID = rtcAttachGeometry(scene_i,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
/* create scene */
TutorialData_Constructor(&data);
g_scene = data.g_scene = rtcNewScene(g_device);
/* add ground plane */
addGroundPlane(data.g_scene);
/* add curves */
addCurve(data.g_scene, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE, make_Vec4f(-5.5f, 0.0f, 3.f, 0.0f));
addCurve(data.g_scene, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE, make_Vec4f(-2.5f, 0.0f, 3.f, 0.0f));
addCurve(data.g_scene, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, make_Vec4f(0.5f, 0.0f, 3.f, 0.0f));
addCurve(data.g_scene, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, make_Vec4f(3.5f, 0.0f, 3.f, 0.0f));
addCurve(data.g_scene, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE, make_Vec4f(+6.0f, 0.0f, 3.f, 0.0f));
addCurve(data.g_scene, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE, make_Vec4f(-4.5f, 0.0f, -2.f, 0.0f));
addCurve(data.g_scene, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE, make_Vec4f(-1.5f, 0.0f, -2.f, 0.0f));
addCurve(data.g_scene, RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE, make_Vec4f(1.5f, 0.0f, -2.f, 0.0f));
addCurve(data.g_scene, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE, make_Vec4f(+4.5f, 0.0f, -2.f, 0.0f));
/* commit changes to scene */
rtcCommitScene (data.g_scene);
}
/* task that renders a single screen tile */
void renderPixelStandard(const uniform TutorialData& data,
int x, int y,
int* pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera, uniform RayStats& stats)
{
/* initialize ray */
Ray ray = make_Ray(make_Vec3f(camera.xfm.p), make_Vec3f(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);
/* intersect ray with scene */
uniform RTCIntersectArguments iargs;
rtcInitIntersectArguments(&iargs);
iargs.feature_mask = (uniform RTCFeatureFlags) (FEATURE_MASK);
rtcIntersectV(data.g_scene,RTCRayHit_(ray),&iargs);
RayStats_addRay(stats);
/* shade pixels */
Vec3f color = make_Vec3f(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
/* interpolate diffuse color */
Vec3f diffuse = make_Vec3f(1.0f,0.0f,0.0f);
if (ray.geomID > 0)
{
switch (ray.geomID) {
case 1: case 2: case 6: diffuse = interpolate_linear(data,ray.primID,ray.u); break;
case 3: case 4: case 5: diffuse = interpolate_bspline(data,ray.primID,ray.u); break;
case 7: case 8: case 9: diffuse = interpolate_catmull_rom(data,ray.primID,ray.u); break;
}
diffuse = 0.5f*diffuse;
}
/* calculate smooth shading normal */
Vec3f Ng = normalize(ray.Ng);
color = color + diffuse*0.5f;
Vec3f lightDir = normalize(make_Vec3f(-1,-1,-1));
/* initialize shadow ray */
Ray shadow = make_Ray(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf, 0.0f);
/* trace shadow ray */
uniform RTCOccludedArguments sargs;
rtcInitOccludedArguments(&sargs);
sargs.feature_mask = (uniform RTCFeatureFlags) (FEATURE_MASK);
rtcOccludedV(data.g_scene,RTCRay_(shadow),&sargs);
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f) {
Vec3f r = normalize(reflect(ray.dir,Ng));
float s = pow(clamp(dot(r,lightDir),0.0f,1.0f),10.0f);
float d = clamp(-dot(lightDir,Ng),0.0f,1.0f);
color = color + diffuse*d + 0.5f*make_Vec3f(s);
}
}
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
/* renders a single screen tile */
void renderTileStandard(uniform int taskIndex,
uniform int threadIndex,
uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
const uniform unsigned int tileY = taskIndex / numTilesX;
const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
const uniform unsigned int x0 = tileX * TILE_SIZE_X;
const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);
foreach_tiled (y = y0 ... y1, x = x0 ... x1)
{
renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
}
}
/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera,
const uniform int numTilesX,
const uniform int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
export void renderFrameStandard (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
TutorialData ldata = data;
sycl::event event = global_gpu_queue->submit([=](sycl::handler& cgh){
const sycl::nd_range<2> nd_range = make_nd_range(height,width);
cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item) {
const unsigned int x = item.get_global_id(1); if (x >= width ) return;
const unsigned int y = item.get_global_id(0); if (y >= height) return;
RayStats stats;
renderPixelStandard(ldata,x,y,pixels,width,height,time,camera,stats);
});
});
global_gpu_queue->wait_and_throw();
const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();
const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();
const double dt = (t1-t0)*1E-9;
((ISPCCamera*)&camera)->render_time = dt;
#else
const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
#endif
}
/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
const uniform unsigned int width,
const uniform unsigned int height,
const uniform float time,
const uniform ISPCCamera& camera)
{
}
/* called by the C++ code for cleanup */
export void device_cleanup ()
{
rtcReleaseScene (data.g_scene); data.g_scene = NULL;
TutorialData_Destructor(&data);
}
|