File: curve_geometry_device.ispc

package info (click to toggle)
embree 4.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 100,656 kB
  • sloc: cpp: 228,918; xml: 40,944; ansic: 2,685; python: 812; sh: 635; makefile: 228; csh: 42
file content (291 lines) | stat: -rw-r--r-- 12,781 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "curve_geometry_device.isph"
#include "../common/tutorial/optics.isph"

/* all features required by this tutorial */
#define FEATURE_MASK \
  RTC_FEATURE_FLAG_TRIANGLE | \
  RTC_FEATURE_FLAG_CONE_LINEAR_CURVE | \
  RTC_FEATURE_FLAG_ROUND_LINEAR_CURVE | \
  RTC_FEATURE_FLAG_FLAT_BSPLINE_CURVE | \
  RTC_FEATURE_FLAG_ROUND_BSPLINE_CURVE | \
  RTC_FEATURE_FLAG_NORMAL_ORIENTED_BSPLINE_CURVE | \
  RTC_FEATURE_FLAG_FLAT_LINEAR_CURVE | \
  RTC_FEATURE_FLAG_FLAT_CATMULL_ROM_CURVE | \
  RTC_FEATURE_FLAG_ROUND_CATMULL_ROM_CURVE | \
  RTC_FEATURE_FLAG_NORMAL_ORIENTED_CATMULL_ROM_CURVE
  
/* scene data */
RTCScene  g_scene  = NULL;
uniform TutorialData data;

Vec3f interpolate_linear(const uniform TutorialData& data, unsigned int primID, float u)
{
  const Vec3fa c0 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+1];
  const Vec3fa c1 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+2];
  return make_Vec3f(c0*(1.0f-u) + c1*u);
}

Vec3f interpolate_bspline(const uniform TutorialData& data, unsigned int primID, float u)
{
  const Vec3fa c0 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+0];
  const Vec3fa c1 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+1];
  const Vec3fa c2 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+2];
  const Vec3fa c3 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+3];
  const float t  = u;
  const float s  = 1.0f - u;
  const float n0 = s*s*s;
  const float n1 = (4.0f*(s*s*s)+(t*t*t)) + (12.0f*((s*t)*s) + 6.0f*((t*s)*t));
  const float n2 = (4.0f*(t*t*t)+(s*s*s)) + (12.0f*((t*s)*t) + 6.0f*((s*t)*s));
  const float n3 = t*t*t;
  return make_Vec3f((1.0f/6.0f)*(n0*c0 + n1*c1 + n2*c2 + n3*c3));
}

Vec3f interpolate_catmull_rom(const uniform TutorialData& data, unsigned int primID, float u)
{
  const Vec3fa c0 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+0];
  const Vec3fa c1 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+1];
  const Vec3fa c2 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+2];
  const Vec3fa c3 = ((Vec3fa* uniform) data.hair_vertex_colors)[primID+3];
  const float t  = u;
  const float s  = 1.0f - u;
  const float n0 = - t * s * s;
  const float n1 = 2.0f + t * t * (3.0f * t - 5.0f);
  const float n2 = 2.0f + s * s * (3.0f * s - 5.0f);
  const float n3 = - s * t * t;
  return make_Vec3f(0.5f*(n0*c0 + n1*c1 + n2*c2 + n3*c3));
}

/* add hair geometry */
uniform unsigned int addCurve (RTCScene scene, uniform RTCGeometryType gtype, const uniform Vec4f& pos)
{
  RTCGeometry geom = rtcNewGeometry (g_device, gtype);
  rtcSetGeometryVertexAttributeCount(geom,1);
  
  if (gtype == RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE || gtype == RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE || gtype == RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE)
    rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT,   data.hair_indices_linear,0, sizeof(uniform unsigned int), NUM_CURVES);
  else
    rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT,   data.hair_indices,       0, sizeof(uniform unsigned int), NUM_CURVES);
  
  uniform Vec4f* uniform verts = (uniform Vec4f* uniform)rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, sizeof(uniform Vec4f), NUM_VERTICES);
  for (uniform int i = 0; i < NUM_VERTICES; i++) {
    verts[i] = pos + data.hair_vertices[i];
  }
  if (gtype == RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE ||
      gtype == RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE ||
      gtype == RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE) {
    rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_NORMAL, 0, RTC_FORMAT_FLOAT3, data.hair_normals, 0, sizeof(uniform Vec3fa), NUM_VERTICES);
  }
  
  if (gtype == RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE || gtype == RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE) {
    rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_FLAGS, 0, RTC_FORMAT_UCHAR, data.hair_flags_linear, 0, sizeof(uniform int8), NUM_CURVES);
  }

  rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE, 0, RTC_FORMAT_FLOAT3, data.hair_vertex_colors, 0, sizeof(uniform Vec3fa),       NUM_VERTICES);
  rtcCommitGeometry(geom);
  uniform unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* adds a ground plane to the scene */
uniform unsigned int addGroundPlane (RTCScene scene_i)
{
  /* create a triangulated plane with 2 triangles and 4 vertices */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* set vertices */
  uniform Vertex* uniform vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(uniform Vertex), 4);
  vertices[0].x = -15; vertices[0].y = -2; vertices[0].z = -15;
  vertices[1].x = -15; vertices[1].y = -2; vertices[1].z = +15;
  vertices[2].x = +15; vertices[2].y = -2; vertices[2].z = -15;
  vertices[3].x = +15; vertices[3].y = -2; vertices[3].z = +15;

  /* set triangles */
  uniform Triangle* uniform triangles = (uniform Triangle* uniform) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(uniform Triangle), 2);
  triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
  triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;

  rtcCommitGeometry(geom);
  uniform unsigned int geomID = rtcAttachGeometry(scene_i,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
  /* create scene */
  TutorialData_Constructor(&data);
  g_scene = data.g_scene = rtcNewScene(g_device);

  /* add ground plane */
  addGroundPlane(data.g_scene);

  /* add curves */
  addCurve(data.g_scene, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE, make_Vec4f(-5.5f, 0.0f, 3.f, 0.0f));
  addCurve(data.g_scene, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE, make_Vec4f(-2.5f, 0.0f, 3.f, 0.0f));
  addCurve(data.g_scene, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, make_Vec4f(0.5f, 0.0f, 3.f, 0.0f));
  addCurve(data.g_scene, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, make_Vec4f(3.5f, 0.0f, 3.f, 0.0f));
  addCurve(data.g_scene, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE, make_Vec4f(+6.0f, 0.0f, 3.f, 0.0f));

  addCurve(data.g_scene, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE, make_Vec4f(-4.5f, 0.0f, -2.f, 0.0f));
  addCurve(data.g_scene, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE, make_Vec4f(-1.5f, 0.0f, -2.f, 0.0f));
  addCurve(data.g_scene, RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE, make_Vec4f(1.5f, 0.0f, -2.f, 0.0f));
  addCurve(data.g_scene, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE, make_Vec4f(+4.5f, 0.0f, -2.f, 0.0f));

  /* commit changes to scene */
  rtcCommitScene (data.g_scene);
}

/* task that renders a single screen tile */
void renderPixelStandard(const uniform TutorialData& data,
                         int x, int y, 
                         int* pixels,
                         const uniform unsigned int width,
                         const uniform unsigned int height,
                         const uniform float time,
                         const uniform ISPCCamera& camera, uniform RayStats& stats)
{
  /* initialize ray */
  Ray ray = make_Ray(make_Vec3f(camera.xfm.p), make_Vec3f(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);

  /* intersect ray with scene */
  uniform RTCIntersectArguments iargs;
  rtcInitIntersectArguments(&iargs);
  iargs.feature_mask = (uniform RTCFeatureFlags) (FEATURE_MASK);
  rtcIntersectV(data.g_scene,RTCRayHit_(ray),&iargs);
  RayStats_addRay(stats);

  /* shade pixels */
  Vec3f color = make_Vec3f(0.0f);
  if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
  {
    /* interpolate diffuse color */
    Vec3f diffuse = make_Vec3f(1.0f,0.0f,0.0f);
    if (ray.geomID > 0)
    {
      switch (ray.geomID) {
      case 1: case 2: case 6: diffuse = interpolate_linear(data,ray.primID,ray.u); break;
      case 3: case 4: case 5: diffuse = interpolate_bspline(data,ray.primID,ray.u); break;
      case 7: case 8: case 9: diffuse = interpolate_catmull_rom(data,ray.primID,ray.u); break;
      }

      diffuse = 0.5f*diffuse;
    }

    /* calculate smooth shading normal */
    Vec3f Ng = normalize(ray.Ng);
    color = color + diffuse*0.5f;
    Vec3f lightDir = normalize(make_Vec3f(-1,-1,-1));

    /* initialize shadow ray */
    Ray shadow = make_Ray(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf, 0.0f);

    /* trace shadow ray */
    uniform RTCOccludedArguments sargs;
    rtcInitOccludedArguments(&sargs);
    sargs.feature_mask = (uniform RTCFeatureFlags) (FEATURE_MASK);
    rtcOccludedV(data.g_scene,RTCRay_(shadow),&sargs);
    RayStats_addShadowRay(stats);

    /* add light contribution */
    if (shadow.tfar >= 0.0f) {
      Vec3f r = normalize(reflect(ray.dir,Ng));
      float s = pow(clamp(dot(r,lightDir),0.0f,1.0f),10.0f);
      float d = clamp(-dot(lightDir,Ng),0.0f,1.0f);
      color = color + diffuse*d + 0.5f*make_Vec3f(s);
    }
  }

  /* write color to framebuffer */
  unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
  unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
  unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
  pixels[y*width+x] = (b << 16) + (g << 8) + r;
}

/* renders a single screen tile */
void renderTileStandard(uniform int taskIndex,
                        uniform int threadIndex,
                        uniform int* uniform pixels,
                        const uniform unsigned int width,
                        const uniform unsigned int height,
                        const uniform float time,
                        const uniform ISPCCamera& camera,
                        const uniform int numTilesX,
                        const uniform int numTilesY)
{
  const uniform unsigned int tileY = taskIndex / numTilesX;
  const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
  const uniform unsigned int x0 = tileX * TILE_SIZE_X;
  const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
  const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  foreach_tiled (y = y0 ... y1, x = x0 ... x1)
  {
    renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
  }
}

/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
                         const uniform unsigned int width,
                         const uniform unsigned int height,
                         const uniform float time,
                         const uniform ISPCCamera& camera,
                         const uniform int numTilesX,
                         const uniform int numTilesY)
{
  renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}

export void renderFrameStandard (uniform int* uniform pixels,
                          const uniform unsigned int width,
                          const uniform unsigned int height,
                          const uniform float time,
                          const uniform ISPCCamera& camera)
{
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
  TutorialData ldata = data;
  sycl::event event = global_gpu_queue->submit([=](sycl::handler& cgh){
    const sycl::nd_range<2> nd_range = make_nd_range(height,width);
    cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item) {
      const unsigned int x = item.get_global_id(1); if (x >= width ) return;
      const unsigned int y = item.get_global_id(0); if (y >= height) return;
      RayStats stats;
      renderPixelStandard(ldata,x,y,pixels,width,height,time,camera,stats);
    });
  });
  global_gpu_queue->wait_and_throw();

  const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();
  const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();
  const double dt = (t1-t0)*1E-9;
  ((ISPCCamera*)&camera)->render_time = dt;
  
#else
  const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
#endif
}

/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
                    const uniform unsigned int width,
                    const uniform unsigned int height,
                    const uniform float time,
                    const uniform ISPCCamera& camera)
{
}

/* called by the C++ code for cleanup */
export void device_cleanup ()
{
  rtcReleaseScene (data.g_scene); data.g_scene = NULL;
  TutorialData_Destructor(&data);
}