1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial_device.h"
namespace embree {
const int numPhi = 20;
const int numTheta = 2*numPhi;
const int numSpheres = 64;
/* state of the lazy geometry */
enum LazyState
{
LAZY_INVALID = 0, // the geometry is not yet created
LAZY_CREATE = 1, // one thread is creating the geometry
LAZY_COMMIT = 2, // possible multiple threads are committing the geometry
LAZY_VALID = 3 // the geometry is created
};
/* representation for our lazy geometry */
struct LazyGeometry
{
ALIGNED_STRUCT_(16)
RTCGeometry geometry;
LazyState state;
RTCScene object;
int userID;
Vec3fa center;
float radius;
};
LazyGeometry* g_objects[numSpheres];
void instanceBoundsFunc(const struct RTCBoundsFunctionArguments* args)
{
const LazyGeometry* instance = (const LazyGeometry*) args->geometryUserPtr;
RTCBounds* bounds_o = args->bounds_o;
Vec3fa lower = instance->center-Vec3fa(instance->radius);
Vec3fa upper = instance->center+Vec3fa(instance->radius);
bounds_o->lower_x = lower.x;
bounds_o->lower_y = lower.y;
bounds_o->lower_z = lower.z;
bounds_o->upper_x = upper.x;
bounds_o->upper_y = upper.y;
bounds_o->upper_z = upper.z;
}
unsigned int createTriangulatedSphere (RTCScene scene, const Vec3fa& p, float r)
{
/* create triangle mesh */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* map triangle and vertex buffers */
Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vertex), numTheta*(numPhi+1));
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(Triangle), 2*numTheta*(numPhi-1));
/* create sphere */
int tri = 0;
const float rcpNumTheta = rcp((float)numTheta);
const float rcpNumPhi = rcp((float)numPhi);
for (int phi=0; phi<=numPhi; phi++)
{
for (int theta=0; theta<numTheta; theta++)
{
const float phif = phi*float(pi)*rcpNumPhi;
const float thetaf = theta*2.0f*float(pi)*rcpNumTheta;
Vertex& v = vertices[phi*numTheta+theta];
v.x = p.x + r*sin(phif)*sin(thetaf);
v.y = p.y + r*cos(phif);
v.z = p.z + r*sin(phif)*cos(thetaf);
}
if (phi == 0) continue;
for (int theta=1; theta<=numTheta; theta++)
{
int p00 = (phi-1)*numTheta+theta-1;
int p01 = (phi-1)*numTheta+theta%numTheta;
int p10 = phi*numTheta+theta-1;
int p11 = phi*numTheta+theta%numTheta;
if (phi > 1) {
triangles[tri].v0 = p10;
triangles[tri].v1 = p01;
triangles[tri].v2 = p00;
tri++;
}
if (phi < numPhi) {
triangles[tri].v0 = p11;
triangles[tri].v1 = p01;
triangles[tri].v2 = p10;
tri++;
}
}
}
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
return geomID;
}
void lazyCreate(LazyGeometry* instance)
{
const bool join_commit_supported = rtcGetDeviceProperty(g_device,RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED);
const bool parallel_commit_supported = rtcGetDeviceProperty(g_device,RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED);
/* one thread will switch the object from the LAZY_INVALID state to the LAZY_CREATE state */
if (atomic_cmpxchg((int32_t*)&instance->state,LAZY_INVALID,LAZY_CREATE) == 0)
{
/* create the geometry */
//printf("creating sphere %i (lazy)\n",instance->userID);
instance->object = rtcNewScene(g_device);
createTriangulatedSphere(instance->object,instance->center,instance->radius);
/* when no parallel commit mode at all is supported let only a single thread build */
if (!join_commit_supported && !parallel_commit_supported)
rtcCommitScene(instance->object);
/* now switch to the LAZY_COMMIT state */
__memory_barrier();
instance->state = LAZY_COMMIT;
}
else
{
/* wait until the geometry got created */
while (atomic_cmpxchg((int32_t*)&instance->state,10,11) < LAZY_COMMIT) {
// instead of actively spinning here, best use a condition to let the thread sleep, or let it help in the creation stage
}
}
/* if we support rtcCommit to get called from multiple threads, then this should be preferred for performance reasons */
if (parallel_commit_supported)
rtcCommitScene(instance->object);
/* otherwise we could fallback to rtcJoinCommit scene, which has lower performance */
else if (join_commit_supported)
rtcJoinCommitScene(instance->object);
/* switch to LAZY_VALID state */
atomic_cmpxchg((int32_t*)&instance->state,LAZY_COMMIT,LAZY_VALID);
}
void eagerCreate(LazyGeometry* instance)
{
//printf("creating sphere %i (eager)\n",instance->userID);
instance->object = rtcNewScene(g_device);
createTriangulatedSphere(instance->object,instance->center,instance->radius);
rtcCommitScene(instance->object);
instance->state = LAZY_VALID;
}
void instanceIntersectFuncN(const RTCIntersectFunctionNArguments* args)
{
const int* valid = args->valid;
void* ptr = args->geometryUserPtr;
RTCRayQueryContext* context = args->context;
RTCRayHitN* rays = (RTCRayHitN*)args->rayhit;
assert(args->N == 1);
LazyGeometry* instance = (LazyGeometry*)ptr;
if (!valid[0])
return;
Ray *ray = (Ray *)rays;
/* create the object if it is not yet created */
if (instance->state != LAZY_VALID)
lazyCreate(instance);
/* trace ray inside object */
const unsigned int geomID = ray->geomID;
ray->geomID = RTC_INVALID_GEOMETRY_ID;
RTCIntersectArguments iargs;
rtcInitIntersectArguments(&iargs);
iargs.context = context;
rtcIntersect1(instance->object,RTCRayHit_(*ray),&iargs);
if (ray->geomID == RTC_INVALID_GEOMETRY_ID) ray->geomID = geomID;
else ray->instID[0] = instance->userID;
}
void instanceOccludedFuncN(const RTCOccludedFunctionNArguments* args)
{
const int* valid = args->valid;
void* ptr = args->geometryUserPtr;
RTCRayQueryContext* context = args->context;
RTCRayHitN* rays = (RTCRayHitN*)args->ray;
assert(args->N == 1);
LazyGeometry* instance = (LazyGeometry*)ptr;
if (!valid[0])
return;
Ray *ray = (Ray *)rays;
/* create the object if it is not yet created */
if (instance->state != LAZY_VALID)
lazyCreate(instance);
/* trace ray inside object */
RTCOccludedArguments sargs;
rtcInitOccludedArguments(&sargs);
sargs.context = context;
rtcOccluded1(instance->object,RTCRay_(*ray),&sargs);
}
LazyGeometry* createLazyObject (RTCScene scene, int userID, const Vec3fa& center, const float radius)
{
LazyGeometry* instance = (LazyGeometry*) alignedUSMMalloc(sizeof(LazyGeometry),16);
instance->state = LAZY_INVALID;
instance->object = nullptr;
instance->userID = userID;
instance->center = center;
instance->radius = radius;
instance->geometry = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
rtcSetGeometryUserPrimitiveCount(instance->geometry,1);
rtcSetGeometryUserData(instance->geometry,instance);
rtcSetGeometryBoundsFunction(instance->geometry,instanceBoundsFunc,nullptr);
rtcSetGeometryIntersectFunction(instance->geometry,instanceIntersectFuncN);
rtcSetGeometryOccludedFunction (instance->geometry,instanceOccludedFuncN);
rtcCommitGeometry(instance->geometry);
rtcAttachGeometry(scene,instance->geometry);
rtcReleaseGeometry(instance->geometry);
/* if we do not support the join mode then Embree also does not
* support lazy build */
if (!rtcGetDeviceProperty(g_device,RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED))
eagerCreate(instance);
return instance;
}
/* creates a ground plane */
unsigned int createGroundPlane (RTCScene scene)
{
/* create a triangulated plane with 2 triangles and 4 vertices */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vertex), 4);
vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;
/* set triangles */
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(Triangle), 2);
triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* scene data */
RTCScene g_scene = nullptr;
/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
/* create scene */
g_scene = rtcNewScene(g_device);
/* instantiate geometry */
createGroundPlane(g_scene);
for (int i=0; i<numSpheres; i++) {
float a = 2.0f*float(M_PI)*(float)i/(float)numSpheres;
g_objects[i] = createLazyObject(g_scene,i,10.0f*Vec3fa(cosf(a),0,sinf(a)),1);
}
rtcCommitScene (g_scene);
}
/* task that renders a single screen tile */
Vec3fa renderPixelStandard(float x, float y, const ISPCCamera& camera, RayStats& stats)
{
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf, 0.0f, -1, RTC_INVALID_GEOMETRY_ID, RTC_INVALID_GEOMETRY_ID);
ray.instID[0] = 4;
/* intersect ray with scene */
rtcIntersect1(g_scene,RTCRayHit_(ray));
RayStats_addRay(stats);
/* shade pixels */
Vec3fa color = Vec3fa(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
Vec3fa diffuse = Vec3fa(1.0f);
color = color + diffuse*0.5;
Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));
/* initialize shadow ray */
Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf);
/* trace shadow ray */
rtcOccluded1(g_scene,RTCRay_(shadow));
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f)
color = color + diffuse*clamp(-dot(lightDir,normalize(ray.Ng)),0.0f,1.0f);
}
return color;
}
/* renders a single screen tile */
void renderTileStandard(int taskIndex,
int threadIndex,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0+TILE_SIZE_X,width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0+TILE_SIZE_Y,height);
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
/* calculate pixel color */
Vec3fa color = renderPixelStandard((float)x,(float)y,camera,g_stats[threadIndex]);
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
}
/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
extern "C" void renderFrameStandard (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
/* render all pixels */
const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
});
}
/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
}
/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
for (int i=0; i<numSpheres; i++) {
if (g_objects[i]->object) rtcReleaseScene(g_objects[i]->object);
delete g_objects[i];
}
rtcReleaseScene (g_scene); g_scene = nullptr;
}
} // namespace embree
|