File: point_geometry_device.cpp

package info (click to toggle)
embree 4.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 100,656 kB
  • sloc: cpp: 228,918; xml: 40,944; ansic: 2,685; python: 812; sh: 635; makefile: 228; csh: 42
file content (236 lines) | stat: -rw-r--r-- 8,456 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "point_geometry_device.h"

namespace embree {

/* all features required by this tutorial */
#define FEATURE_MASK \
  RTC_FEATURE_FLAG_TRIANGLE | \
  RTC_FEATURE_FLAG_ORIENTED_DISC_POINT | \
  RTC_FEATURE_FLAG_DISC_POINT | \
  RTC_FEATURE_FLAG_SPHERE_POINT

RTCScene  g_scene  = nullptr;
TutorialData data;

/* add point geometry */
void addPoints (RTCScene scene, RTCGeometryType gtype, const Vec3fa& pos)
{
  RandomSampler rng;
  RandomSampler_init(rng, 42);

#define COORD RandomSampler_get1D(rng) * 4.f - 2.f
#define RADIUS RandomSampler_get1D(rng) * 0.13f + 0.02f
#define COLOR RandomSampler_get1D(rng)
#define NORMAL RandomSampler_get1D(rng) * 2.f - 1.f

  RTCGeometry geom = rtcNewGeometry (g_device, gtype);
  Vec4f* point_vertices = (Vec4f*)rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, sizeof(Vec4f), NUM_POINTS);

  for (int i = 0; i < NUM_POINTS; i++)
  {
    const float vx = COORD;
    const float vy = COORD;
    const float vz = COORD;
    const float vr = RADIUS;
    point_vertices[i] = Vec4f(pos.x,pos.y,pos.z,0.0f) + Vec4f(vx, vy, vz, vr);
    const float cr = COLOR;
    const float cg = COLOR;
    const float cb = COLOR;
    data.point_colors[i] = Vec3fa(cr,cg,cb);
  }

  if (gtype == RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT) {
    Vec3fa* point_normals = (Vec3fa*)rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_NORMAL, 0, RTC_FORMAT_FLOAT3, sizeof(Vec3fa), NUM_POINTS);
    for (int i = 0; i < NUM_POINTS; i++) {
      const float nx = NORMAL;
      const float ny = NORMAL;
      const float nz = NORMAL;
      point_normals[i] = Vec3fa(nx,ny,nz);
      point_normals[i] = normalize(point_normals[i]);
    }
  }

  rtcCommitGeometry(geom);
  rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
}

/* adds a ground plane to the scene */
unsigned int addGroundPlane (RTCScene scene_i)
{
  /* create a triangulated plane with 2 triangles and 4 vertices */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* set vertices */
  Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, sizeof(Vertex), 4);
  vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
  vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
  vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
  vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;

  /* set triangles */
  Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(Triangle), 2);
  triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
  triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene_i,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
  /* create scene */
  TutorialData_Constructor(&data);
  g_scene = data.g_scene = rtcNewScene(g_device);

  /* add ground plane */
  addGroundPlane(g_scene);

  /* add curve */
  addPoints(g_scene, RTC_GEOMETRY_TYPE_SPHERE_POINT,        Vec3fa( 0.0f, 0.0f, 0.0f));
  addPoints(g_scene, RTC_GEOMETRY_TYPE_DISC_POINT,          Vec3fa( 5.0f, 0.0f, 0.0f));
  addPoints(g_scene, RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT, Vec3fa(-5.0f, 0.0f, 0.0f));

  /* commit changes to scene */
  rtcCommitScene (g_scene);
}

/* task that renders a single screen tile */
void renderPixelStandard(const TutorialData& data,
                          int x, int y, 
                          int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera, RayStats& stats)
{
  /* initialize ray */
  Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);

  /* intersect ray with scene */
  RTCIntersectArguments iargs;
  rtcInitIntersectArguments(&iargs);
  iargs.feature_mask = (RTCFeatureFlags)(FEATURE_MASK);
  
  rtcIntersect1(data.g_scene,RTCRayHit_(ray),&iargs);
  RayStats_addRay(stats);

  /* shade pixels */
  Vec3fa color = Vec3fa(0.0f);
  if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
  {
    /* interpolate diffuse color */
    Vec3fa diffuse = data.point_colors[ray.geomID ? ray.primID : 0];

    /* calculate smooth shading normal */
    Vec3fa Ng = normalize(ray.Ng);
    color = color + diffuse*0.5f;
    Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));

    /* initialize shadow ray */
    Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf, 0.0f);

    /* trace shadow ray */
    RTCOccludedArguments sargs;
    rtcInitOccludedArguments(&sargs);
    sargs.feature_mask = (RTCFeatureFlags)(FEATURE_MASK);
  
    rtcOccluded1(data.g_scene,RTCRay_(shadow),&sargs);
    RayStats_addShadowRay(stats);

    /* add light contribution */
    if (shadow.tfar >= 0.0f) {
      Vec3fa r = normalize(reflect(ray.dir,Ng));
      float s = pow(clamp(dot(r,lightDir),0.0f,1.0f),10.0f);
      float d = clamp(-dot(lightDir,Ng),0.0f,1.0f);
      color = color + diffuse*d + 0.5f*Vec3fa(s);
    }
  }

  /* write color to framebuffer */
  unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
  unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
  unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
  pixels[y*width+x] = (b << 16) + (g << 8) + r;
}

/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera,
                         const int numTilesX,
                         const int numTilesY)
{
  const unsigned int tileY = taskIndex / numTilesX;
  const unsigned int tileX = taskIndex - tileY * numTilesX;
  const unsigned int x0 = tileX * TILE_SIZE_X;
  const unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const unsigned int y0 = tileY * TILE_SIZE_Y;
  const unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
  }
}

extern "C" void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
{
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
  TutorialData ldata = data;
  sycl::event event = global_gpu_queue->submit([=](sycl::handler& cgh){
    const sycl::nd_range<2> nd_range = make_nd_range(height,width);
    cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item) {
      const unsigned int x = item.get_global_id(1); if (x >= width ) return;
      const unsigned int y = item.get_global_id(0); if (y >= height) return;
      RayStats stats;
      renderPixelStandard(ldata,x,y,pixels,width,height,time,camera,stats);
    });
  });
  global_gpu_queue->wait_and_throw();

  const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();
  const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();
  const double dt = (t1-t0)*1E-9;
  ((ISPCCamera*)&camera)->render_time = dt;
  
#else
  const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
  }); 
#endif
}


/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
                    const unsigned int width,
                    const unsigned int height,
                    const float time,
                    const ISPCCamera& camera)
{
}

/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
  TutorialData_Destructor(&data);
}

} // namespace embree