File: quaternion_motion_blur_device.cpp

package info (click to toggle)
embree 4.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 100,656 kB
  • sloc: cpp: 228,918; xml: 40,944; ansic: 2,685; python: 812; sh: 635; makefile: 228; csh: 42
file content (476 lines) | stat: -rw-r--r-- 17,374 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "quaternion_motion_blur_device.h"
#include "../common/math/random_sampler.h"
#include "../common/math/sampling.h"

namespace embree {

#define USE_ARGUMENT_CALLBACKS 1

/* all features required by this tutorial */
#if USE_ARGUMENT_CALLBACKS
#define FEATURE_MASK \
  RTC_FEATURE_FLAG_TRIANGLE | \
  RTC_FEATURE_FLAG_INSTANCE | \
  RTC_FEATURE_FLAG_USER_GEOMETRY | \
  RTC_FEATURE_FLAG_MOTION_BLUR | \
  RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_ARGUMENTS
#else
  #define FEATURE_MASK \
  RTC_FEATURE_FLAG_TRIANGLE | \
  RTC_FEATURE_FLAG_INSTANCE | \
  RTC_FEATURE_FLAG_USER_GEOMETRY | \
  RTC_FEATURE_FLAG_MOTION_BLUR | \
  RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_GEOMETRY
#endif

/* scene data */
RTCScene g_scene = nullptr;
TutorialData data;

RTCGeometry g_instance_linear_0 = nullptr;
RTCGeometry g_instance_linear_1 = nullptr;
RTCGeometry g_instance_quaternion_0 = nullptr;
RTCGeometry g_instance_quaternion_1 = nullptr;
RTCQuaternionDecomposition qdc[10];

extern "C" bool g_changed;
extern "C" float g_time;
extern "C" int g_spp;
extern "C" int g_numTimeSteps;
extern "C" float g_shutter_close;
extern "C" bool g_animate;
extern "C" bool g_motion_blur;
extern "C" bool g_reset;

RTCIntersectFunctionN sphereIntersectFuncPtr = nullptr;

AffineSpace3fa fromQuaternionDecomposition(const RTCQuaternionDecomposition& qdc)
{
  AffineSpace3fa T = AffineSpace3fa::scale(Vec3fa(1.f, 1.f, 1.f));
  T.p = Vec3fa(qdc.translation_x, qdc.translation_y, qdc.translation_z);

  AffineSpace3fa S = AffineSpace3fa::scale(Vec3fa(1.f, 1.f, 1.f));
  S.l.vx.x = qdc.scale_x; S.l.vy.x = qdc.skew_xy; S.l.vz.x = qdc.skew_xz; S.p.x = qdc.shift_x;
                          S.l.vy.y = qdc.scale_y; S.l.vz.y = qdc.skew_yz; S.p.y = qdc.shift_y;
                                                  S.l.vz.z = qdc.scale_z; S.p.z = qdc.shift_z;

  Quaternion3f q = Quaternion3f(Vec4f(
    qdc.quaternion_r, qdc.quaternion_i, qdc.quaternion_j, qdc.quaternion_k));

  AffineSpace3fa R = AffineSpace3fa(LinearSpace3fa(q));
  return T * R * S;
}

void updateTransformation()
{
  // transformation matrizes for instance 0 (rotation around axis through sphere center)
  rtcSetGeometryTimeStepCount(g_instance_linear_0, g_numTimeSteps);
  rtcSetGeometryTimeStepCount(g_instance_quaternion_0, g_numTimeSteps);
  for (int i = 0; i < g_numTimeSteps; ++i)
  {
    // scale/skew, rotation, transformation data for quaternion motion blur
    float K = g_numTimeSteps > 0 ? ((float)i)/(g_numTimeSteps-1) : 0.f;
    float R = K * 2.0f * float(M_PI);
    if (g_numTimeSteps == 3) R = K * (2.0f - 1e-6f) * float(M_PI);

    Quaternion3f q = Quaternion3f::rotate(Vec3fa(0.f, 1.f, 0.f), R);
    rtcInitQuaternionDecomposition(qdc+i);
    rtcQuaternionDecompositionSetQuaternion(qdc+i, q.r, q.i, q.j, q.k);
    rtcQuaternionDecompositionSetScale(qdc+i, 3.f, 3.f, 3.f);
    rtcQuaternionDecompositionSetTranslation(qdc+i, -5.5f, 0.f, -5.5f);
    rtcSetGeometryTransformQuaternion(g_instance_quaternion_0, i, qdc+i);

    rtcQuaternionDecompositionSetTranslation(qdc+i, -5.5f, 0.f, 5.5f);
    AffineSpace3fa xfm = fromQuaternionDecomposition(qdc[i]);
    rtcSetGeometryTransform(g_instance_linear_0, i, RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&(xfm.l.vx.x));
  }

  // transformation matrizes for instance 1 (translation and rotation around origin)
  rtcSetGeometryTimeStepCount(g_instance_linear_1, g_numTimeSteps);
  rtcSetGeometryTimeStepCount(g_instance_quaternion_1, g_numTimeSteps);
  for (int i = 0; i < g_numTimeSteps; ++i)
  {
    // scale/skew, rotation, transformation data for quaternion motion blur
    float K = g_numTimeSteps > 0 ? ((float)i)/(g_numTimeSteps-1) : 0.f;
    float R = K * 2.0f * float(M_PI);
    if (g_numTimeSteps == 3) R = K * (2.0f - 1e-6f) * float(M_PI);

    Quaternion3f q = Quaternion3f::rotate(Vec3fa(0.f, 1.f, 0.f), R);
    rtcInitQuaternionDecomposition(qdc+i);
    rtcQuaternionDecompositionSetQuaternion(qdc+i, q.r, q.i, q.j, q.k);
    rtcQuaternionDecompositionSetShift(qdc+i, 3.f, 0.f, 3.f);
    rtcQuaternionDecompositionSetTranslation(qdc+i, 5.5f, 0.f, -5.5f);
    rtcSetGeometryTransformQuaternion(g_instance_quaternion_1, i, qdc+i);

    rtcQuaternionDecompositionSetTranslation(qdc+i, 5.5f, 0.f, 5.5f);
    AffineSpace3fa xfm = fromQuaternionDecomposition(qdc[i]);
    rtcSetGeometryTransform(g_instance_linear_1, i, RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&(xfm.l.vx.x));
  }

  rtcCommitGeometry(g_instance_linear_0);
  rtcCommitGeometry(g_instance_linear_1);
  rtcCommitGeometry(g_instance_quaternion_0);
  rtcCommitGeometry(g_instance_quaternion_1);
}

// ======================================================================== //
//                     User defined sphere geometry                         //
// ======================================================================== //

void sphereBoundsFunc(const struct RTCBoundsFunctionArguments* args)
{
  const Sphere* spheres = (const Sphere*) args->geometryUserPtr;
  RTCBounds* bounds_o = args->bounds_o;
  const Sphere& sphere = spheres[args->primID];
  bounds_o->lower_x = sphere.p.x-sphere.r;
  bounds_o->lower_y = sphere.p.y-sphere.r;
  bounds_o->lower_z = sphere.p.z-sphere.r;
  bounds_o->upper_x = sphere.p.x+sphere.r;
  bounds_o->upper_y = sphere.p.y+sphere.r;
  bounds_o->upper_z = sphere.p.z+sphere.r;
}

RTC_SYCL_INDIRECTLY_CALLABLE void sphereIntersectFunc(const RTCIntersectFunctionNArguments* args)
{
  int* valid = args->valid;
  void* ptr  = args->geometryUserPtr;
  Ray *ray = (Ray*)args->rayhit;
  RTCHit* hit = (RTCHit *)&ray->Ng.x;
  unsigned int primID = args->primID;

  if (args->N != 1)
    return;
  const Sphere* spheres = (const Sphere*)ptr;
  const Sphere& sphere = spheres[primID];

  if (!valid[0]) return;
  valid[0] = 0;

  const Vec3fa v = ray->org-sphere.p;
  const float A = dot(ray->dir,ray->dir);
  const float B = 2.0f*dot(v,ray->dir);
  const float C = dot(v,v) - sqr(sphere.r);
  const float D = B*B - 4.0f*A*C;
  if (D < 0.0f) return;
  const float Q = sqrt(D);
  const float rcpA = rcp(A);
  const float t0 = 0.5f*rcpA*(-B-Q);
  const float t1 = 0.5f*rcpA*(-B+Q);

  RTCHit potentialHit;
  potentialHit.u = 0.0f;
  potentialHit.v = 0.0f;
  potentialHit.geomID = sphere.geomID;
  potentialHit.primID = primID;
  if ((ray->tnear() < t0) & (t0 < ray->tfar))
  {
    const Vec3fa Ng = ray->org+t0*ray->dir-sphere.p;
    potentialHit.Ng_x = Ng.x;
    potentialHit.Ng_y = Ng.y;
    potentialHit.Ng_z = Ng.z;
    ray->tfar = t0;
    *hit = potentialHit;
    valid[0] = -1;
  }

  if ((ray->tnear() < t1) & (t1 < ray->tfar))
  {
    const Vec3fa Ng = ray->org+t1*ray->dir-sphere.p;
    potentialHit.Ng_x = Ng.x;
    potentialHit.Ng_y = Ng.y;
    potentialHit.Ng_z = Ng.z;
    ray->tfar = t1;
    *hit = potentialHit;
    valid[0] = -1;
  }
}

Sphere* createAnalyticalSpheres (RTCScene scene, unsigned int N)
{
  RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
  Sphere* spheres = (Sphere*) alignedUSMMalloc((N)*sizeof(Sphere),16);
  unsigned int geomID = rtcAttachGeometry(scene,geom);
  for (unsigned int i=0; i<N; i++) {
    spheres[i].geometry = geom;
    spheres[i].geomID = geomID;
  }
  rtcSetGeometryUserPrimitiveCount(geom,N);
  rtcSetGeometryUserData(geom,spheres);
  rtcSetGeometryBoundsFunction(geom,sphereBoundsFunc,nullptr);
#if !USE_ARGUMENT_CALLBACKS
  rtcSetGeometryIntersectFunction(geom,sphereIntersectFuncPtr);
#endif
  rtcCommitGeometry(geom);
  rtcReleaseGeometry(geom);
  return spheres;
}

/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
  sphereIntersectFuncPtr = GET_FUNCTION_POINTER(sphereIntersectFunc);
  
  /* create scene */
  TutorialData_Constructor(&data);
  g_scene = data.g_scene = rtcNewScene(g_device);

  /* create scene with 4 analytical spheres */
  data.g_scene0 = rtcNewScene(g_device);
  data.g_spheres = createAnalyticalSpheres(data.g_scene0, 1);
  data.g_spheres[0].p = Vec3fa(0, 0, 0);
  data.g_spheres[0].r = 1.0f;
  rtcCommitScene(data.g_scene0);

  // attach multiple times otherwise Embree will optimize and not use
  // internal instancing (magic!)
  g_instance_linear_0 = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  g_instance_linear_1 = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  g_instance_quaternion_0 = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  g_instance_quaternion_1 = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  rtcSetGeometryInstancedScene(g_instance_linear_0, data.g_scene0);
  rtcSetGeometryInstancedScene(g_instance_linear_1, data.g_scene0);
  rtcSetGeometryInstancedScene(g_instance_quaternion_0, data.g_scene0);
  rtcSetGeometryInstancedScene(g_instance_quaternion_1, data.g_scene0);
  updateTransformation();
  for (int i = 0; i < 2; ++i)
  {
    rtcAttachGeometry(data.g_scene, g_instance_linear_0);
    rtcAttachGeometry(data.g_scene, g_instance_linear_1);
    rtcAttachGeometry(data.g_scene, g_instance_quaternion_0);
    rtcAttachGeometry(data.g_scene, g_instance_quaternion_1);
  }
  rtcReleaseGeometry(g_instance_linear_0);
  rtcReleaseGeometry(g_instance_linear_1);
  rtcReleaseGeometry(g_instance_quaternion_0);
  rtcReleaseGeometry(g_instance_quaternion_1);
  rtcCommitGeometry(g_instance_linear_0);
  rtcCommitGeometry(g_instance_linear_1);
  rtcCommitGeometry(g_instance_quaternion_0);
  rtcCommitGeometry(g_instance_quaternion_1);

  rtcCommitScene (data.g_scene);
}

inline Vec3fa face_forward(const Vec3fa& dir, const Vec3fa& _Ng) {
  const Vec3fa Ng = _Ng;
  return dot(dir,Ng) < 0.0f ? Ng : neg(Ng);
}

Vec3fa renderPixelFunction(const TutorialData& data,
                          float x, float y,
                          RandomSampler& sampler,
                          const ISPCCamera& camera,
                          RayStats& stats)
{
  RTCIntersectArguments args;
  rtcInitIntersectArguments(&args);
  args.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
#if USE_ARGUMENT_CALLBACKS
  args.intersect = sphereIntersectFunc;
#endif

  float time = data.g_motion_blur ? RandomSampler_get1D(sampler) * data.g_shutter_close: data.g_time;

  /* initialize ray */
  Ray ray(Vec3fa(camera.xfm.p),
                     Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)),
                     0.0f, inf, time, -1,
                     RTC_INVALID_GEOMETRY_ID, RTC_INVALID_GEOMETRY_ID);

  /* intersect ray with scene */
  rtcIntersect1(data.g_scene,RTCRayHit_(ray),&args);
  RayStats_addRay(stats);

  /* shade pixels */
  Vec3fa color = Vec3fa(1.0f);
  if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
  {
    Vec3fa Ns = ray.Ng;
    Ns = face_forward(ray.dir,normalize(Ns));

    // shade sphere
    Vec3fa Ng = normalize(ray.Ng);
    float u = (atan2(Ng.z, Ng.x) + float(M_PI)) / (2.f * float(M_PI));
    float v = acos(Ng.y) / float(M_PI);
    u = 16*u+0.5f;
    v = 19*v+0.5f;
    color = ((u-(int)u) < 0.9f && (v-(int)v) < 0.9f) ? Vec3fa(0.5f) : Vec3fa(0.2f);
  }
  return color;
}

/* task that renders a single screen tile */
Vec3fa renderPixelStandard(const TutorialData& data,
                           float x, float y,
                           const ISPCCamera& camera,
                           RayStats& stats)
{
  RandomSampler sampler;

  Vec3fa L = Vec3fa(0.0f);

  for (int i=0; i<data.g_spp; i++)
  {
    RandomSampler_init(sampler, (int)x, (int)y, data.g_accu_count*data.g_spp+i);

    /* calculate pixel color */
    float fx = x + RandomSampler_get1D(sampler);
    float fy = y + RandomSampler_get1D(sampler);
    L = L + renderPixelFunction(data,fx,fy,sampler,camera,stats);
  }
  L = L/(float)data.g_spp;
  return L;
}

void renderPixelStandard(const TutorialData& data,
                         int x, int y,
                         int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera, RayStats& stats)
{
  Vec3fa color = renderPixelStandard(data,(float)x,(float)y,camera,stats);

  /* write color to framebuffer */
  Vec3ff accu_color = data.g_accu[y*width+x] + Vec3ff(color.x,color.y,color.z,1.0f); data.g_accu[y*width+x] = accu_color;
  float f = rcp(max(1.f,accu_color.w));
  unsigned int r = (unsigned int) (255.0f * clamp(accu_color.x*f,0.0f,1.0f));
  unsigned int g = (unsigned int) (255.0f * clamp(accu_color.y*f,0.0f,1.0f));
  unsigned int b = (unsigned int) (255.0f * clamp(accu_color.z*f,0.0f,1.0f));
  pixels[y*width+x] = (b << 16) + (g << 8) + r;
}

/* renders a single screen tile */
void renderTileStandard(int taskIndex,
                        int threadIndex,
                        int* pixels,
                        const unsigned int width,
                        const unsigned int height,
                        const float time,
                        const ISPCCamera& camera,
                        const int numTilesX,
                        const int numTilesY)
{
  const unsigned int tileY = taskIndex / numTilesX;
  const unsigned int tileX = taskIndex - tileY * numTilesX;
  const unsigned int x0 = tileX * TILE_SIZE_X;
  const unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const unsigned int y0 = tileY * TILE_SIZE_Y;
  const unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    
    renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
  }
}

/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera,
                         const int numTilesX,
                         const int numTilesY)
{
  renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}

extern "C" void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
{
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
  TutorialData ldata = data;
  sycl::event event = global_gpu_queue->submit([=](sycl::handler& cgh){
    const sycl::nd_range<2> nd_range = make_nd_range(height,width);
    cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item) {
      const unsigned int x = item.get_global_id(1); if (x >= width ) return;
      const unsigned int y = item.get_global_id(0); if (y >= height) return;
      RayStats stats;
      renderPixelStandard(ldata,x,y,pixels,width,height,time,camera,stats);
    });
  });
  global_gpu_queue->wait_and_throw();

  const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();
  const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();
  const double dt = (t1-t0)*1E-9;
  ((ISPCCamera*)&camera)->render_time = dt;
  
#else
  const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
  }); 
#endif
}


/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
                           const unsigned int width,
                           const unsigned int height,
                           const float time,
                           const ISPCCamera& camera)
{
  data.g_spp = g_spp;
  data.g_motion_blur = g_motion_blur;
  data.g_time = g_time;
  data.g_shutter_close = g_shutter_close;

  if (g_animate) {
    data.g_time = 0.5f * cos(time) + 0.5f;
    data.g_shutter_close = pow(data.g_time, 4.f);
    g_reset = true;
  }

  if (data.g_accu_width != width || data.g_accu_height != height) {
    alignedUSMFree(data.g_accu);
    data.g_accu = (Vec3ff*) alignedUSMMalloc((width*height)*sizeof(Vec3ff),16,EMBREE_USM_SHARED_DEVICE_READ_WRITE);
    data.g_accu_width = width;
    data.g_accu_height = height;
    for (unsigned int i=0; i<width*height; i++)
      data.g_accu[i] = Vec3ff(0.0f);
  }

  if (g_changed || g_reset)
  {
    updateTransformation();
    rtcCommitScene(data.g_scene);
  }


  /* reset accumulator */
  bool camera_changed = g_changed || g_reset; g_changed = false; g_reset = false;
  camera_changed |= ne(data.g_accu_vx,camera.xfm.l.vx); data.g_accu_vx = camera.xfm.l.vx;
  camera_changed |= ne(data.g_accu_vy,camera.xfm.l.vy); data.g_accu_vy = camera.xfm.l.vy;
  camera_changed |= ne(data.g_accu_vz,camera.xfm.l.vz); data.g_accu_vz = camera.xfm.l.vz;
  camera_changed |= ne(data.g_accu_p, camera.xfm.p);    data.g_accu_p  = camera.xfm.p;
  if (camera_changed) {
    data.g_accu_count=0;
    for (unsigned int i=0; i<width*height; i++)
      data.g_accu[i] = Vec3ff(0.0f);
  }
  else {
    data.g_accu_count++;
  }
}

/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
  TutorialData_Destructor(&data);
}

} // namespace embree