File: ray_mask_device.cpp

package info (click to toggle)
embree 4.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 100,656 kB
  • sloc: cpp: 228,918; xml: 40,944; ansic: 2,685; python: 812; sh: 635; makefile: 228; csh: 42
file content (251 lines) | stat: -rw-r--r-- 10,794 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "ray_mask_device.h"

namespace embree {

/* all features required by this tutorial */
#define FEATURE_MASK \
  RTC_FEATURE_FLAG_TRIANGLE | \
  RTC_FEATURE_FLAG_32_BIT_RAY_MASK
  
const unsigned int MASK_PV_SV = (1 <<  0); // geometry mask, primary rays visible,   secondary rays visible
const unsigned int MASK_PI_SV = (1 <<  2); // geometry mask, primary rays invisible, secondary rays visible
const unsigned int MASK_PV_SI = (1 << 10); // geometry mask, primary rays visible,   secondary rays invisible

RTCScene g_scene = nullptr;
TutorialData data;

extern "C" bool g_ray_mask;

/* adds a cube to the scene */
unsigned int addCube (RTCScene scene_i, const Vec3fa& d, unsigned int mask)
{
  /* create a triangulated cube with 12 triangles and 8 vertices */
  RTCGeometry mesh = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* set vertices and vertex colors */
  Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),8);
  data.vertex_colors[0] = Vec3fa(0,0,0); vertices[0].x = -1 + d.x; vertices[0].y = -1 + d.y; vertices[0].z = -1 + d.z;
  data.vertex_colors[1] = Vec3fa(0,0,1); vertices[1].x = -1 + d.x; vertices[1].y = -1 + d.y; vertices[1].z = +1 + d.z;
  data.vertex_colors[2] = Vec3fa(0,1,0); vertices[2].x = -1 + d.x; vertices[2].y = +1 + d.y; vertices[2].z = -1 + d.z;
  data.vertex_colors[3] = Vec3fa(0,1,1); vertices[3].x = -1 + d.x; vertices[3].y = +1 + d.y; vertices[3].z = +1 + d.z;
  data.vertex_colors[4] = Vec3fa(1,0,0); vertices[4].x = +1 + d.x; vertices[4].y = -1 + d.y; vertices[4].z = -1 + d.z;
  data.vertex_colors[5] = Vec3fa(1,0,1); vertices[5].x = +1 + d.x; vertices[5].y = -1 + d.y; vertices[5].z = +1 + d.z;
  data.vertex_colors[6] = Vec3fa(1,1,0); vertices[6].x = +1 + d.x; vertices[6].y = +1 + d.y; vertices[6].z = -1 + d.z;
  data.vertex_colors[7] = Vec3fa(1,1,1); vertices[7].x = +1 + d.x; vertices[7].y = +1 + d.y; vertices[7].z = +1 + d.z;

  /* set triangles and face colors */
  int tri = 0;
  Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),12);

  // left side
  data.face_colors[tri] = Vec3fa(1,0,0); triangles[tri].v0 = 0; triangles[tri].v1 = 1; triangles[tri].v2 = 2; tri++;
  data.face_colors[tri] = Vec3fa(1,0,0); triangles[tri].v0 = 1; triangles[tri].v1 = 3; triangles[tri].v2 = 2; tri++;

  // right side
  data.face_colors[tri] = Vec3fa(0,1,0); triangles[tri].v0 = 4; triangles[tri].v1 = 6; triangles[tri].v2 = 5; tri++;
  data.face_colors[tri] = Vec3fa(0,1,0); triangles[tri].v0 = 5; triangles[tri].v1 = 6; triangles[tri].v2 = 7; tri++;

  // bottom side
  data.face_colors[tri] = Vec3fa(0.5f);  triangles[tri].v0 = 0; triangles[tri].v1 = 4; triangles[tri].v2 = 1; tri++;
  data.face_colors[tri] = Vec3fa(0.5f);  triangles[tri].v0 = 1; triangles[tri].v1 = 4; triangles[tri].v2 = 5; tri++;

  // top side
  data.face_colors[tri] = Vec3fa(1.0f);  triangles[tri].v0 = 2; triangles[tri].v1 = 3; triangles[tri].v2 = 6; tri++;
  data.face_colors[tri] = Vec3fa(1.0f);  triangles[tri].v0 = 3; triangles[tri].v1 = 7; triangles[tri].v2 = 6; tri++;

  // front side
  data.face_colors[tri] = Vec3fa(0,0,1); triangles[tri].v0 = 0; triangles[tri].v1 = 2; triangles[tri].v2 = 4; tri++;
  data.face_colors[tri] = Vec3fa(0,0,1); triangles[tri].v0 = 2; triangles[tri].v1 = 6; triangles[tri].v2 = 4; tri++;

  // back side
  data.face_colors[tri] = Vec3fa(1,1,0); triangles[tri].v0 = 1; triangles[tri].v1 = 5; triangles[tri].v2 = 3; tri++;
  data.face_colors[tri] = Vec3fa(1,1,0); triangles[tri].v0 = 3; triangles[tri].v1 = 5; triangles[tri].v2 = 7; tri++;

  rtcSetGeometryVertexAttributeCount(mesh,1);
  rtcSetSharedGeometryBuffer(mesh,RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE,0,RTC_FORMAT_FLOAT3,data.vertex_colors,0,sizeof(Vec3fa),8);
  rtcSetGeometryMask(mesh,mask);
  
  rtcCommitGeometry(mesh);
  unsigned int geomID = rtcAttachGeometry(scene_i,mesh);
  rtcReleaseGeometry(mesh);
  return geomID;
}

/* adds a ground plane to the scene */
unsigned int addGroundPlane (RTCScene scene_i)
{
  /* create a triangulated plane with 2 triangles and 4 vertices */
  RTCGeometry mesh = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* set vertices */
  Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),4);
  vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
  vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
  vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
  vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;

  /* set triangles */
  Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2);
  triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
  triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
  
  rtcCommitGeometry(mesh);
  unsigned int geomID = rtcAttachGeometry(scene_i,mesh);
  rtcReleaseGeometry(mesh);
  return geomID;
}

/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{ 
  /* create scene */
  TutorialData_Constructor(&data);
  g_scene = data.g_scene = rtcNewScene(g_device);

  /* create face and vertex color arrays */
  data.face_colors = (Vec3fa*) alignedUSMMalloc((12)*sizeof(Vec3fa),16);
  data.vertex_colors = (Vec3fa*) alignedUSMMalloc((8)*sizeof(Vec3fa),16);

  /* add cube */
  addCube(data.g_scene,Vec3fa(-3.f, 0.f, 0.f), MASK_PI_SV);
  addCube(data.g_scene,Vec3fa( 0.f, 0.f, 0.f), MASK_PV_SV);
  addCube(data.g_scene,Vec3fa( 3.f, 0.f, 0.f), MASK_PV_SI);

  /* add ground plane */
  addGroundPlane(data.g_scene);

  /* commit changes to scene */
  rtcCommitScene (data.g_scene);
}

/* task that renders a single screen tile */
void renderPixelStandard(const TutorialData& data,
                         int x, int y, 
                         int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera, RayStats& stats)
{
  /* initialize ray */
  Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);
  if (data.enable_ray_mask)
    ray.mask = MASK_PV_SV + MASK_PV_SI;

  /* intersect ray with scene */
  RTCIntersectArguments iargs;
  rtcInitIntersectArguments(&iargs);
  iargs.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
  rtcIntersect1(data.g_scene,RTCRayHit_(ray),&iargs);
  RayStats_addRay(stats);

  /* shade pixels */
  Vec3fa color = Vec3fa(0.0f);
  if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
  {
    Vec3fa diffuse = data.face_colors[ray.primID];
    color = color + diffuse*0.5f;
    Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));

    /* initialize shadow ray */
    Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf);
    if (data.enable_ray_mask)
      shadow.mask = MASK_PV_SV + MASK_PI_SV;

    /* trace shadow ray */
    RTCOccludedArguments sargs;
    rtcInitOccludedArguments(&sargs);
    sargs.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
    rtcOccluded1(data.g_scene,RTCRay_(shadow),&sargs);
    RayStats_addShadowRay(stats);

    /* add light contribution */
    if (shadow.tfar >= 0.0f)
      color = color + diffuse*clamp(-dot(lightDir,normalize(ray.Ng)),0.0f,1.0f);
  }

  /* write color to framebuffer */
  unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
  unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
  unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
  pixels[y*width+x] = (b << 16) + (g << 8) + r;
}

/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera,
                         const int numTilesX,
                         const int numTilesY)
{
  const unsigned int tileY = taskIndex / numTilesX;
  const unsigned int tileX = taskIndex - tileY * numTilesX;
  const unsigned int x0 = tileX * TILE_SIZE_X;
  const unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const unsigned int y0 = tileY * TILE_SIZE_Y;
  const unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
  }
}

/* called by the C++ code to render */
extern "C" void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
{
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
  TutorialData ldata = data;
  sycl::event event = global_gpu_queue->submit([=](sycl::handler& cgh){
    const sycl::nd_range<2> nd_range = make_nd_range(height,width);
    cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item) {
      const unsigned int x = item.get_global_id(1); if (x >= width ) return;
      const unsigned int y = item.get_global_id(0); if (y >= height) return;
      RayStats stats;
      renderPixelStandard(ldata,x,y,pixels,width,height,time,camera,stats);
    });
  });
  global_gpu_queue->wait_and_throw();

  const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();
  const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();
  const double dt = (t1-t0)*1E-9;
  ((ISPCCamera*)&camera)->render_time = dt;
#else
  const uint64_t numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const uint64_t numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  const uint64_t numTiles = numTilesX * numTilesY;
  parallel_for(size_t(0),size_t(numTiles),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
  }); 
#endif
}

/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
                           const unsigned int width,
                           const unsigned int height,
                           const float time,
                           const ISPCCamera& camera)
{
  data.enable_ray_mask = g_ray_mask;
}

/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
  TutorialData_Destructor(&data);
}

} // namespace embree