1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "ray_mask_device.h"
namespace embree {
/* all features required by this tutorial */
#define FEATURE_MASK \
RTC_FEATURE_FLAG_TRIANGLE | \
RTC_FEATURE_FLAG_32_BIT_RAY_MASK
const unsigned int MASK_PV_SV = (1 << 0); // geometry mask, primary rays visible, secondary rays visible
const unsigned int MASK_PI_SV = (1 << 2); // geometry mask, primary rays invisible, secondary rays visible
const unsigned int MASK_PV_SI = (1 << 10); // geometry mask, primary rays visible, secondary rays invisible
RTCScene g_scene = nullptr;
TutorialData data;
extern "C" bool g_ray_mask;
/* adds a cube to the scene */
unsigned int addCube (RTCScene scene_i, const Vec3fa& d, unsigned int mask)
{
/* create a triangulated cube with 12 triangles and 8 vertices */
RTCGeometry mesh = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices and vertex colors */
Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),8);
data.vertex_colors[0] = Vec3fa(0,0,0); vertices[0].x = -1 + d.x; vertices[0].y = -1 + d.y; vertices[0].z = -1 + d.z;
data.vertex_colors[1] = Vec3fa(0,0,1); vertices[1].x = -1 + d.x; vertices[1].y = -1 + d.y; vertices[1].z = +1 + d.z;
data.vertex_colors[2] = Vec3fa(0,1,0); vertices[2].x = -1 + d.x; vertices[2].y = +1 + d.y; vertices[2].z = -1 + d.z;
data.vertex_colors[3] = Vec3fa(0,1,1); vertices[3].x = -1 + d.x; vertices[3].y = +1 + d.y; vertices[3].z = +1 + d.z;
data.vertex_colors[4] = Vec3fa(1,0,0); vertices[4].x = +1 + d.x; vertices[4].y = -1 + d.y; vertices[4].z = -1 + d.z;
data.vertex_colors[5] = Vec3fa(1,0,1); vertices[5].x = +1 + d.x; vertices[5].y = -1 + d.y; vertices[5].z = +1 + d.z;
data.vertex_colors[6] = Vec3fa(1,1,0); vertices[6].x = +1 + d.x; vertices[6].y = +1 + d.y; vertices[6].z = -1 + d.z;
data.vertex_colors[7] = Vec3fa(1,1,1); vertices[7].x = +1 + d.x; vertices[7].y = +1 + d.y; vertices[7].z = +1 + d.z;
/* set triangles and face colors */
int tri = 0;
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),12);
// left side
data.face_colors[tri] = Vec3fa(1,0,0); triangles[tri].v0 = 0; triangles[tri].v1 = 1; triangles[tri].v2 = 2; tri++;
data.face_colors[tri] = Vec3fa(1,0,0); triangles[tri].v0 = 1; triangles[tri].v1 = 3; triangles[tri].v2 = 2; tri++;
// right side
data.face_colors[tri] = Vec3fa(0,1,0); triangles[tri].v0 = 4; triangles[tri].v1 = 6; triangles[tri].v2 = 5; tri++;
data.face_colors[tri] = Vec3fa(0,1,0); triangles[tri].v0 = 5; triangles[tri].v1 = 6; triangles[tri].v2 = 7; tri++;
// bottom side
data.face_colors[tri] = Vec3fa(0.5f); triangles[tri].v0 = 0; triangles[tri].v1 = 4; triangles[tri].v2 = 1; tri++;
data.face_colors[tri] = Vec3fa(0.5f); triangles[tri].v0 = 1; triangles[tri].v1 = 4; triangles[tri].v2 = 5; tri++;
// top side
data.face_colors[tri] = Vec3fa(1.0f); triangles[tri].v0 = 2; triangles[tri].v1 = 3; triangles[tri].v2 = 6; tri++;
data.face_colors[tri] = Vec3fa(1.0f); triangles[tri].v0 = 3; triangles[tri].v1 = 7; triangles[tri].v2 = 6; tri++;
// front side
data.face_colors[tri] = Vec3fa(0,0,1); triangles[tri].v0 = 0; triangles[tri].v1 = 2; triangles[tri].v2 = 4; tri++;
data.face_colors[tri] = Vec3fa(0,0,1); triangles[tri].v0 = 2; triangles[tri].v1 = 6; triangles[tri].v2 = 4; tri++;
// back side
data.face_colors[tri] = Vec3fa(1,1,0); triangles[tri].v0 = 1; triangles[tri].v1 = 5; triangles[tri].v2 = 3; tri++;
data.face_colors[tri] = Vec3fa(1,1,0); triangles[tri].v0 = 3; triangles[tri].v1 = 5; triangles[tri].v2 = 7; tri++;
rtcSetGeometryVertexAttributeCount(mesh,1);
rtcSetSharedGeometryBuffer(mesh,RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE,0,RTC_FORMAT_FLOAT3,data.vertex_colors,0,sizeof(Vec3fa),8);
rtcSetGeometryMask(mesh,mask);
rtcCommitGeometry(mesh);
unsigned int geomID = rtcAttachGeometry(scene_i,mesh);
rtcReleaseGeometry(mesh);
return geomID;
}
/* adds a ground plane to the scene */
unsigned int addGroundPlane (RTCScene scene_i)
{
/* create a triangulated plane with 2 triangles and 4 vertices */
RTCGeometry mesh = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),4);
vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;
/* set triangles */
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(mesh,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2);
triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
rtcCommitGeometry(mesh);
unsigned int geomID = rtcAttachGeometry(scene_i,mesh);
rtcReleaseGeometry(mesh);
return geomID;
}
/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
/* create scene */
TutorialData_Constructor(&data);
g_scene = data.g_scene = rtcNewScene(g_device);
/* create face and vertex color arrays */
data.face_colors = (Vec3fa*) alignedUSMMalloc((12)*sizeof(Vec3fa),16);
data.vertex_colors = (Vec3fa*) alignedUSMMalloc((8)*sizeof(Vec3fa),16);
/* add cube */
addCube(data.g_scene,Vec3fa(-3.f, 0.f, 0.f), MASK_PI_SV);
addCube(data.g_scene,Vec3fa( 0.f, 0.f, 0.f), MASK_PV_SV);
addCube(data.g_scene,Vec3fa( 3.f, 0.f, 0.f), MASK_PV_SI);
/* add ground plane */
addGroundPlane(data.g_scene);
/* commit changes to scene */
rtcCommitScene (data.g_scene);
}
/* task that renders a single screen tile */
void renderPixelStandard(const TutorialData& data,
int x, int y,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera, RayStats& stats)
{
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);
if (data.enable_ray_mask)
ray.mask = MASK_PV_SV + MASK_PV_SI;
/* intersect ray with scene */
RTCIntersectArguments iargs;
rtcInitIntersectArguments(&iargs);
iargs.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
rtcIntersect1(data.g_scene,RTCRayHit_(ray),&iargs);
RayStats_addRay(stats);
/* shade pixels */
Vec3fa color = Vec3fa(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
Vec3fa diffuse = data.face_colors[ray.primID];
color = color + diffuse*0.5f;
Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));
/* initialize shadow ray */
Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf);
if (data.enable_ray_mask)
shadow.mask = MASK_PV_SV + MASK_PI_SV;
/* trace shadow ray */
RTCOccludedArguments sargs;
rtcInitOccludedArguments(&sargs);
sargs.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
rtcOccluded1(data.g_scene,RTCRay_(shadow),&sargs);
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f)
color = color + diffuse*clamp(-dot(lightDir,normalize(ray.Ng)),0.0f,1.0f);
}
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0+TILE_SIZE_X,width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0+TILE_SIZE_Y,height);
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
}
}
/* called by the C++ code to render */
extern "C" void renderFrameStandard (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
TutorialData ldata = data;
sycl::event event = global_gpu_queue->submit([=](sycl::handler& cgh){
const sycl::nd_range<2> nd_range = make_nd_range(height,width);
cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item) {
const unsigned int x = item.get_global_id(1); if (x >= width ) return;
const unsigned int y = item.get_global_id(0); if (y >= height) return;
RayStats stats;
renderPixelStandard(ldata,x,y,pixels,width,height,time,camera,stats);
});
});
global_gpu_queue->wait_and_throw();
const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();
const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();
const double dt = (t1-t0)*1E-9;
((ISPCCamera*)&camera)->render_time = dt;
#else
const uint64_t numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const uint64_t numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
const uint64_t numTiles = numTilesX * numTilesY;
parallel_for(size_t(0),size_t(numTiles),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
});
#endif
}
/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
data.enable_ray_mask = g_ray_mask;
}
/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
TutorialData_Destructor(&data);
}
} // namespace embree
|