1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial_device.h"
#include "../common/math/random_sampler.h"
#include "../common/math/sampling.h"
#include "../common/tutorial/scene_device.h"
namespace embree {
/* the scene to render */
extern RTCScene g_scene;
extern "C" ISPCScene* g_ispc_scene;
/* intensity scaling for traversal cost visualization */
extern "C" float scale;
extern "C" bool g_changed;
extern "C" float g_debug;
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
static const sycl::specialization_id<RTCFeatureFlags> spec_feature_mask;
#endif
extern "C" RTCFeatureFlags g_feature_mask;
struct DebugShaderData
{
RTCScene scene;
ISPCScene* ispc_scene;
/* intensity scaling for traversal cost visualization */
float scale;
float debug;
Shader shader;
};
void DebugShaderData_Constructor(DebugShaderData* This)
{
This->scene = g_scene;
This->ispc_scene = g_ispc_scene;
This->scale = scale;
This->debug = g_debug;
This->shader = shader;
}
#define RENDER_FRAME_FUNCTION_ISPC(Name) \
void renderTile##Name(int taskIndex, \
int threadIndex, \
const DebugShaderData& data, \
int* pixels, \
const unsigned int width, \
const unsigned int height, \
const float time, \
const ISPCCamera& camera, \
const int numTilesX, \
const int numTilesY) \
{ \
const int t = taskIndex; \
const unsigned int tileY = t / numTilesX; \
const unsigned int tileX = t - tileY * numTilesX; \
const unsigned int x0 = tileX * TILE_SIZE_X; \
const unsigned int x1 = min(x0+TILE_SIZE_X,width); \
const unsigned int y0 = tileY * TILE_SIZE_Y; \
const unsigned int y1 = min(y0+TILE_SIZE_Y,height); \
\
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++) \
{ \
Vec3fa color = renderPixel##Name(data,(float)x,(float)y,camera,g_stats[threadIndex],RTC_FEATURE_FLAG_ALL); \
\
/* write color to framebuffer */ \
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f)); \
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f)); \
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f)); \
pixels[y*width+x] = (b << 16) + (g << 8) + r; \
} \
} \
\
task void renderTileTask##Name(const DebugShaderData& data, \
int* pixels, \
const unsigned int width, \
const unsigned int height, \
const float time, \
const ISPCCamera& camera, \
const int numTilesX, \
const int numTilesY) \
{ \
renderTile##Name(taskIndex,threadIndex,data,pixels,width,height,time,camera,numTilesX,numTilesY); \
} \
\
extern "C" void renderFrame##Name (int* pixels, \
const unsigned int width, \
const unsigned int height, \
const float time, \
const ISPCCamera& camera) \
{ \
DebugShaderData data; \
DebugShaderData_Constructor(&data); \
const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X; \
const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y; \
launch[numTilesX*numTilesY] renderTileTask##Name(data,pixels,width,height,time,camera,numTilesX,numTilesY); \
}
#define RENDER_FRAME_FUNCTION_CPP(Name) \
void renderTile##Name(int taskIndex, \
int threadIndex, \
const DebugShaderData& data, \
int* pixels, \
const unsigned int width, \
const unsigned int height, \
const float time, \
const ISPCCamera& camera, \
const int numTilesX, \
const int numTilesY) \
{ \
const int t = taskIndex; \
const unsigned int tileY = t / numTilesX; \
const unsigned int tileX = t - tileY * numTilesX; \
const unsigned int x0 = tileX * TILE_SIZE_X; \
const unsigned int x1 = min(x0+TILE_SIZE_X,width); \
const unsigned int y0 = tileY * TILE_SIZE_Y; \
const unsigned int y1 = min(y0+TILE_SIZE_Y,height); \
\
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++) \
{ \
Vec3fa color = renderPixel##Name(data,(float)x,(float)y,camera,g_stats[threadIndex],RTC_FEATURE_FLAG_ALL); \
\
/* write color to framebuffer */ \
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f)); \
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f)); \
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f)); \
pixels[y*width+x] = (b << 16) + (g << 8) + r; \
} \
} \
\
void renderTileTask##Name(int taskIndex, int threadIndex, \
const DebugShaderData& data, \
int* pixels, \
const unsigned int width, \
const unsigned int height, \
const float time, \
const ISPCCamera& camera, \
const int numTilesX, \
const int numTilesY) \
{ \
renderTile##Name(taskIndex,threadIndex,data,pixels,width,height,time,camera,numTilesX,numTilesY); \
} \
\
extern "C" void renderFrame##Name (int* pixels, \
const unsigned int width, \
const unsigned int height, \
const float time, \
const ISPCCamera& camera) \
{ \
DebugShaderData data; \
DebugShaderData_Constructor(&data); \
const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X; \
const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y; \
parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) { \
const int threadIndex = (int)TaskScheduler::threadIndex(); \
for (size_t i=range.begin(); i<range.end(); i++) \
renderTileTask##Name((int)i,threadIndex,data,pixels,width,height,time,camera,numTilesX,numTilesY); \
}); \
}
#define RENDER_FRAME_FUNCTION_SYCL(Name) \
extern "C" void renderFrame##Name (int* pixels, \
const unsigned int width, \
const unsigned int height, \
const float time, \
const ISPCCamera& camera) \
{ \
DebugShaderData data; \
DebugShaderData_Constructor(&data); \
sycl::event event; \
\
event = global_gpu_queue->submit([=](sycl::handler& cgh) {\
cgh.set_specialization_constant<spec_feature_mask>(g_feature_mask);\
const sycl::nd_range<2> nd_range = make_nd_range(height,width); \
cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item, sycl::kernel_handler kh) { \
const unsigned int x = item.get_global_id(1); if (x >= width ) return; \
const unsigned int y = item.get_global_id(0); if (y >= height) return; \
RayStats stats; \
const RTCFeatureFlags feature_mask = kh.get_specialization_constant<spec_feature_mask>(); \
Vec3fa color = renderPixel##Name(data,x,y,camera,stats,feature_mask); \
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f)); \
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f)); \
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f)); \
pixels[y*width+x] = (b << 16) + (g << 8) + r; \
}); \
}); \
global_gpu_queue->wait_and_throw();\
\
const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();\
const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();\
const double dt = (t1-t0)*1E-9;\
((ISPCCamera*)&camera)->render_time = dt;\
}
Vec3fa randomColor(const int ID)
{
int r = ((ID+13)*17*23) & 255;
int g = ((ID+15)*11*13) & 255;
int b = ((ID+17)* 7*19) & 255;
const float oneOver255f = 1.f/255.f;
return Vec3fa(r*oneOver255f,g*oneOver255f,b*oneOver255f);
}
/* renders a single pixel with eyelight shading */
Vec3fa renderPixelDebugShader(const DebugShaderData& data, float x, float y, const ISPCCamera& camera, RayStats& stats, const RTCFeatureFlags feature_mask)
{
/* initialize ray */
Ray ray;
ray.org = Vec3ff(camera.xfm.p);
ray.dir = Vec3ff(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz));
ray.tnear() = 0.0f;
ray.tfar = inf;
ray.geomID = RTC_INVALID_GEOMETRY_ID;
ray.primID = RTC_INVALID_GEOMETRY_ID;
ray.mask = -1;
ray.time() = data.debug;
/* intersect ray with scene */
int64_t c0 = get_tsc();
if (data.shader == SHADER_OCCLUSION)
{
RTCOccludedArguments args;
rtcInitOccludedArguments(&args);
args.feature_mask = feature_mask;
rtcOccluded1(data.scene,RTCRay_(ray),&args);
}
else
{
RTCIntersectArguments args;
rtcInitIntersectArguments(&args);
args.feature_mask = feature_mask;
rtcIntersect1(data.scene,RTCRayHit_(ray),&args);
}
int64_t c1 = get_tsc();
RayStats_addRay(stats);
/* shade pixel */
switch (data.shader)
{
case SHADER_EYELIGHT:
if (ray.geomID == RTC_INVALID_GEOMETRY_ID)
return Vec3fa(0.0f);
else if (dot(ray.dir,ray.Ng) < 0.0f)
return Vec3fa(0.0f,abs(dot(ray.dir,normalize(ray.Ng))),0.0f);
else
return Vec3fa(abs(dot(ray.dir,normalize(ray.Ng))),0.0f,0.0f);
case SHADER_OCCLUSION:
if (ray.tfar >= 0.0f)
return Vec3fa(0.0f,0.0f,0.0f);
else
return Vec3fa(1.0f,1.0f,1.0f);
case SHADER_UV:
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) return Vec3fa(0.0f,0.0f,0.0f);
else return Vec3fa(ray.u,ray.v,1.0f-ray.u-ray.v);
case SHADER_TEXCOORDS:
case SHADER_TEXCOORDS_GRID:
#if !defined(__SYCL_DEVICE_ONLY__)
if (ray.geomID == RTC_INVALID_GEOMETRY_ID)
return Vec3fa(0.0f,0.0f,1.0f);
else if (data.ispc_scene)
{
Vec2f st = Vec2f(0,0);
auto geomID = ray.geomID; {
RTCGeometry geometry = rtcGetGeometry(data.scene,geomID);
rtcInterpolate0(geometry,ray.primID,ray.u,ray.v,RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE,2,&st.x,2);
}
if (data.shader == SHADER_TEXCOORDS)
return Vec3fa(st.x,st.y,0.0f);
else
return ((int)(10.0f*st.x)+(int)(10.0f*st.y)) % 2 == 0 ? Vec3fa(1,0,0) : Vec3fa(0,1,0);
}
#endif
return Vec3fa(1.0f);
case SHADER_NG:
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) return Vec3fa(0.0f,0.0f,0.0f);
else return abs(normalize(Vec3fa(ray.Ng.x,ray.Ng.y,ray.Ng.z)));
//else return normalize(Vec3fa(ray.Ng.x,ray.Ng.y,ray.Ng.z));
case SHADER_GEOMID:
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) return Vec3fa(0.0f);
else return randomColor(ray.geomID);
case SHADER_GEOMID_PRIMID:
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) return Vec3fa(0.0f);
else return randomColor(ray.geomID ^ ray.primID)*Vec3fa(abs(dot(ray.dir,normalize(ray.Ng))));
case SHADER_CYCLES:
return Vec3fa((float)(c1-c0)*data.scale,0.0f,0.0f);
case SHADER_AO:
return Vec3fa(0,0,0);
case SHADER_DEFAULT:
return Vec3fa(0,0,0);
}
return Vec3fa(0,0,0);
}
/* renders a single pixel with eyelight shading */
Vec3fa renderPixelAOShader(const DebugShaderData& data, float x, float y, const ISPCCamera& camera, RayStats& stats, const RTCFeatureFlags feature_mask)
{
/* initialize ray */
Ray ray;
ray.org = Vec3ff(camera.xfm.p);
ray.dir = Vec3ff(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz));
ray.tnear() = 0.0f;
ray.tfar = inf;
ray.geomID = RTC_INVALID_GEOMETRY_ID;
ray.primID = RTC_INVALID_GEOMETRY_ID;
ray.mask = -1;
ray.time() = data.debug;
/* intersect ray with scene */
RTCIntersectArguments args;
rtcInitIntersectArguments(&args);
args.feature_mask = feature_mask;
rtcIntersect1(data.scene,RTCRayHit_(ray),&args);
RayStats_addRay(stats);
/* shade pixel */
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) return Vec3fa(0.0f);
Vec3fa Ng = normalize(ray.Ng);
Vec3fa Nf = faceforward(Ng,ray.dir,Ng);
Vec3fa col = Vec3fa(min(1.f,.3f+.8f*abs(dot(Ng,normalize(ray.dir)))));
/* calculate hit point */
float intensity = 0;
Vec3fa hitPos = ray.org + ray.tfar * ray.dir;
#define AMBIENT_OCCLUSION_SAMPLES 64
/* trace some ambient occlusion rays */
RandomSampler sampler;
RandomSampler_init(sampler, (int)x, (int)y, 0);
for (int i=0; i<AMBIENT_OCCLUSION_SAMPLES; i++)
{
Vec2f sample = RandomSampler_get2D(sampler);
Sample3f dir = cosineSampleHemisphere(sample.x,sample.y,Nf);
/* initialize shadow ray */
Ray shadow;
shadow.org = Vec3ff(hitPos);
shadow.dir = Vec3ff(dir.v);
shadow.tnear() = 0.001f;
shadow.tfar = inf;
shadow.geomID = RTC_INVALID_GEOMETRY_ID;
shadow.primID = RTC_INVALID_GEOMETRY_ID;
shadow.mask = -1;
shadow.time() = data.debug;
/* trace shadow ray */
RTCOccludedArguments args;
rtcInitOccludedArguments(&args);
args.feature_mask = feature_mask;
rtcOccluded1(data.scene,RTCRay_(shadow),&args);
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f)
intensity += 1.0f;
}
intensity *= 1.0f/AMBIENT_OCCLUSION_SAMPLES;
/* shade pixel */
return col * intensity;
}
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
RENDER_FRAME_FUNCTION_SYCL(DebugShader)
RENDER_FRAME_FUNCTION_SYCL(AOShader)
#else
RENDER_FRAME_FUNCTION_CPP(DebugShader)
RENDER_FRAME_FUNCTION_CPP(AOShader)
#endif
} // namespace embree
|