File: voronoi_device.cpp

package info (click to toggle)
embree 4.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 100,656 kB
  • sloc: cpp: 228,918; xml: 40,944; ansic: 2,685; python: 812; sh: 635; makefile: 228; csh: 42
file content (419 lines) | stat: -rw-r--r-- 13,758 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "voronoi_device.h"

#include <functional>
#include <queue>

namespace embree {

RTCScene g_scene;
TutorialData data;

/* scene data */
#define NUM_COLORS 27
int g_num_points_current;

typedef void (*DrawGUI)(void);

extern "C" Vec3fa g_query_point;
extern "C" int g_num_points;
extern "C" int g_num_knn;
extern "C" bool g_show_voronoi;
extern "C" bool g_point_repulsion;
extern "C" float g_tmax;

struct Neighbour
{
  unsigned int primID;
  float d;

  bool operator<(Neighbour const& n1) const { return d < n1.d; }
};

struct KNNResult
{
  KNNResult(int num_knn, Point const * const points) 
    : points(points)
  {
    visited.reserve(2 * num_knn);
  }

  unsigned int k;
  std::priority_queue<Neighbour, std::vector<Neighbour>> knn;
  std::vector<unsigned int> visited; // primIDs of all visited points
  Point const * const points;
};

// ======================================================================== //
//                     User defined point geometry                         //
// ======================================================================== //

struct Point
{
  ALIGNED_STRUCT_(16)
  Vec3fa p;                      //!< position
  RTCGeometry geometry;
  unsigned int geomID;
};

void pointBoundsFunc(const struct RTCBoundsFunctionArguments* args)
{
  const Point* points = (const Point*) args->geometryUserPtr;
  RTCBounds* bounds_o = args->bounds_o;
  const Point& point = points[args->primID];
  bounds_o->lower_x = point.p.x;
  bounds_o->lower_y = point.p.y;
  bounds_o->lower_z = point.p.z;
  bounds_o->upper_x = point.p.x;
  bounds_o->upper_y = point.p.y;
  bounds_o->upper_z = point.p.z;
}

bool pointQueryFunc(struct RTCPointQueryFunctionArguments* args)
{
  RTCPointQuery* query = (RTCPointQuery*)args->query;
  assert(args->query);

  KNNResult* result = (KNNResult*)args->userPtr;
  assert(result);
  const unsigned int primID = args->primID;
  const Vec3f q(query->x, query->y, query->z);
  const Point& point = result->points[primID];
  const float d = distance(point.p, q);
    
  result->visited.push_back(primID);

  if (d < query->radius && (result->knn.size() < result->k || d < result->knn.top().d))
  {
    Neighbour neighbour;
    neighbour.primID = primID;
    neighbour.d = d;
  
    if (result->knn.size() == result->k)
      result->knn.pop();
      
    result->knn.push(neighbour);
  
    if (result->knn.size() == result->k)
    {
      const float R = result->knn.top().d;
      query->radius = R;
      return true;
    }
  }
  return false;
}

void knnQuery(Vec3f const& q, float radius, KNNResult* result)
{
  RTCPointQuery query;
  query.x = q.x;
  query.y = q.y;
  query.z = q.z;
  query.radius = radius;
  query.time = 0.f;
  RTCPointQueryContext context;
  rtcInitPointQueryContext(&context);
  rtcPointQuery(data.scene, &query, &context, pointQueryFunc, (void*)result);
}

void createPoints (TutorialData& data)
{
  RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
  data.points = (Point*) alignedMalloc(data.num_points*sizeof(Point), 16);
  data.points_tmp = (Point*) alignedMalloc(data.num_points*sizeof(Point), 16);
  unsigned int geomID = rtcAttachGeometry(data.scene, geom);
  for (unsigned int i=0; i<data.num_points; i++) {
    data.points[i].geometry = geom;
    data.points[i].geomID = geomID;
    data.points_tmp[i].geometry = geom;
    data.points_tmp[i].geomID = geomID;
  }
  rtcSetGeometryUserPrimitiveCount(geom, data.num_points);
  rtcSetGeometryUserData(geom, data.points);
  rtcSetGeometryBoundsFunction(geom, pointBoundsFunc, nullptr);
  rtcCommitGeometry(geom);
  rtcReleaseGeometry(geom);

  RandomSampler rs;
  RandomSampler_init(rs, 42);
  for (unsigned int i = 0; i < data.num_points; ++i) 
  {
    float xi1 = RandomSampler_getFloat(rs);
    float xi2 = RandomSampler_getFloat(rs);
    data.points[i].p = Vec3f(xi1, 0.f, xi2);
  }

  g_num_points_current = data.num_points;
}

/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
  /* create scene */
  TutorialData_Constructor(&data);

  data.query_point = g_query_point;
  data.num_points = g_num_points;
  data.num_knn = g_num_knn;
  data.show_voronoi = g_show_voronoi;
  data.point_repulsion = g_point_repulsion;
  data.tmax = g_tmax;

  g_scene = data.scene = rtcNewScene(g_device);
  createPoints(data);
  rtcCommitScene(data.scene);

  data.colors = (Vec3fa*) alignedMalloc(NUM_COLORS*sizeof(Point), 16);
  for (int r = 0; r < 3; ++r) for (int g = 0; g < 3; ++g) for (int b = 0; b < 3; ++b) 
    data.colors[r * 9 + g * 3 + b] = Vec3fa(0.2f + 0.3f * r, 0.2f + 0.3f * g, 0.2f + 0.3f * b); 
}

/* renders a single screen tile */
void renderTileStandard(int taskIndex,
                        int threadIndex,
                        int* pixels,
                        const unsigned int width,
                        const unsigned int height,
                        const float time,
                        const ISPCCamera& camera,
                        const int numTilesX,
                        const int numTilesY)
{
  const unsigned int tileY = taskIndex / numTilesX;
  const unsigned int tileX = taskIndex - tileY * numTilesX;
  const unsigned int x0 = tileX * TILE_SIZE_X;
  const unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const unsigned int y0 = tileY * TILE_SIZE_Y;
  const unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    Vec3fa color = Vec3fa(0.f);
    if (data.show_voronoi)
    {
      Vec3fa q = Vec3fa((float(x) + 0.5f) / width, 0.f, (float(y) + 0.5f) / height);

      KNNResult result(data.num_knn, data.points);
      result.k = 1;
      knnQuery(q, data.tmax, &result);
      unsigned int primID = result.knn.empty() ? RTC_INVALID_GEOMETRY_ID : result.knn.top().primID;

      if (primID != RTC_INVALID_GEOMETRY_ID)
        color = data.colors[primID % 27];
    }

    /* write color to framebuffer */
    unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
    unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
    unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
    pixels[y*width+x] = (b << 16) + (g << 8) + r;
  }
}

/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera,
                         const int numTilesX,
                         const int numTilesY)
{
  renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}

void splat_color(int* pixels, 
                 unsigned int width, 
                 unsigned int height, 
                 int kernel_size,
                 float x, float y, Vec3fa const& color)
{
  for (int dy = -kernel_size; dy <= kernel_size; ++dy)
  for (int dx = -kernel_size; dx <= kernel_size; ++dx)
  {
    unsigned int r = (unsigned int)(255.0f * clamp(color.x, 0.0f, 1.0f));
    unsigned int g = (unsigned int)(255.0f * clamp(color.y, 0.0f, 1.0f));
    unsigned int b = (unsigned int)(255.0f * clamp(color.z, 0.0f, 1.0f));
    const unsigned int px = (unsigned int)min(width  - 1.f, max(0.f, x * width  + dx));
    const unsigned int py = (unsigned int)min(height - 1.f, max(0.f, y * height + dy));
    pixels[py*width + px] = (b << 16) + (g << 8) + r;
  }
}

void rebuild_bvh()
{
  rtcReleaseScene (data.scene); 
  g_scene = data.scene = rtcNewScene(g_device);
  RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
  rtcAttachGeometry(data.scene, geom);
  rtcSetGeometryUserPrimitiveCount(geom, data.num_points);
  rtcSetGeometryUserData(geom, data.points);
  rtcSetGeometryBoundsFunction(geom, pointBoundsFunc, nullptr);
  rtcCommitGeometry(geom);
  rtcReleaseGeometry(geom);
  rtcCommitScene(data.scene);
}

extern "C" void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
{
}

/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
                           const unsigned int width,
                           const unsigned int height,
                           const float time,
                           const ISPCCamera& camera)
{
  data.query_point = g_query_point;
  data.num_points = g_num_points;
  data.num_knn = g_num_knn;
  data.show_voronoi = g_show_voronoi;
  data.point_repulsion = g_point_repulsion;
  data.tmax = g_tmax;

  if (data.num_points != g_num_points_current)
  {
    rtcReleaseScene (data.scene); 
    g_scene = data.scene = rtcNewScene(g_device);
    alignedFree(data.points);
    alignedFree(data.points_tmp);
    createPoints(data);
    rtcCommitScene(data.scene);
  }

  if (data.point_repulsion)
  {
    parallel_for(size_t(0), size_t(data.num_points), [&](const range<size_t>& range) {
      for (size_t i = range.begin(); i < range.end(); i++)
      {
        // perform nearest neighbour search for point 
        KNNResult result(data.num_knn, data.points);
        result.k = data.num_knn + 1;
        knnQuery(data.points[i].p, data.tmax, &result);
        if (result.knn.empty())
          continue;

        const float D = result.knn.top().d;
        result.knn.pop();

        // store number of nearest neighbours for normalization later
        const size_t K = result.knn.size();
        assert(K >= 1);

        // tusk point repulsion formula
        Vec3fa dx(0.f);
        while (!result.knn.empty())
        {
          Point const& q = data.points[result.knn.top().primID];
          dx += (data.points[i].p - q.p) * (D / (result.knn.top().d + 1e-4f) - 1.f);
          result.knn.pop();
        }
        data.points_tmp[i].p = min(Vec3fa(1.f), max(Vec3fa(0.f), data.points[i].p + (1.f / K) * dx));
      }
    });

    // copy new point locations and rebuild bvh
    for (int i = 0; i < data.num_points; ++i)
      data.points[i] = data.points_tmp[i];
    rebuild_bvh();
  }

  // clear image and draw voronoi regions if enabled
  const int numTilesX = (width + TILE_SIZE_X - 1) / TILE_SIZE_X;
  const int numTilesY = (height + TILE_SIZE_Y - 1) / TILE_SIZE_Y;
  parallel_for(size_t(0), size_t(numTilesX*numTilesY), [&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i = range.begin(); i < range.end(); i++)
      renderTileTask((int)i, threadIndex, pixels, width, height, time, camera, numTilesX, numTilesY);
  });

  // draw points
  parallel_for(size_t(0), size_t(data.num_points), [&](const range<size_t>& range) {
    for (size_t i = range.begin(); i < range.end(); i++)
    {
      Point const& p = data.points[i];
      Vec3fa color = Vec3fa(0.9f);
      if (data.show_voronoi) color = data.colors[i%NUM_COLORS] / 0.8f;
      splat_color(pixels, width, height, 2, p.p.x, p.p.z, color);
    }
  });

  if (!data.show_voronoi)
  {
    // perform nearest neighbour query for query point
    KNNResult result(data.num_knn, data.points);
    result.k = data.num_knn;
    knnQuery(data.query_point, data.tmax, &result);

    if (!result.knn.empty())
    {
      // draw search radius
      parallel_for(size_t(0), size_t(numTilesX*numTilesY), [&](const range<size_t>& range) {
        for (size_t i = range.begin(); i < range.end(); i++)
        {
          const unsigned int tileY = (unsigned int)i / numTilesX;
          const unsigned int tileX = (unsigned int)i - tileY * numTilesX;
          const unsigned int x0 = tileX * TILE_SIZE_X;
          const unsigned int x1 = min(x0 + TILE_SIZE_X, width);
          const unsigned int y0 = tileY * TILE_SIZE_Y;
          const unsigned int y1 = min(y0 + TILE_SIZE_Y, height);

          for (unsigned int y = y0; y < y1; y++)
            for (unsigned int x = x0; x < x1; x++)
            {
              Vec3fa q = Vec3fa((float(x) + 0.5f) / width, 0.f, (float(y) + 0.5f) / height);
              if ( pixels[y*width + x] > 0) 
                continue;
              Vec3fa color(0.0f, 0.0f, 0.0f);
              if (distance(q, data.query_point) < result.knn.top().d)
                color = Vec3fa(0.2f, 0.2f, 0.8f);
              else if (distance(q, data.query_point) < data.tmax)
                  color = Vec3fa(0.2f, 0.2f, 0.2f);
              else {
                continue;
              }
              unsigned int r = (unsigned int)(255.0f * clamp(color.x, 0.0f, 1.0f));
              unsigned int g = (unsigned int)(255.0f * clamp(color.y, 0.0f, 1.0f));
              unsigned int b = (unsigned int)(255.0f * clamp(color.z, 0.0f, 1.0f));
              pixels[y*width + x] = (b << 16) + (g << 8) + r;
            }
        }
      });
    }
    
    // draw all visited points
    for (unsigned int primID : result.visited)
    {
      Point const& p = data.points[primID];
      splat_color(pixels, width, height, 2, p.p.x, p.p.z, Vec3fa(0.8f, 0.2f, 0.2f));
    }

    // draw nearest neighbours
    while (!result.knn.empty())
    {
      Point const& p = data.points[result.knn.top().primID];
      splat_color(pixels, width, height, 2, p.p.x, p.p.z, Vec3fa(0.2f, 0.8f, 0.2f));
      result.knn.pop();
    }

    // draw query point
    splat_color(pixels, width, height, 2, data.query_point.x, data.query_point.z, Vec3fa(0.8f, 0.8f, 0.2f));
  }
}

/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
  rtcReleaseDevice(g_device); g_device = nullptr;
  TutorialData_Destructor(&data);
}

} // namespace embree