File: motion_derivative.cpp

package info (click to toggle)
embree 4.4.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 99,492 kB
  • sloc: cpp: 224,036; xml: 40,944; ansic: 2,731; python: 812; sh: 639; makefile: 228; csh: 42
file content (234 lines) | stat: -rw-r--r-- 8,218 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "motion_derivative.h"
#include "../../common/sys/regression.h"

#include <random>

namespace embree
{
  struct motion_derivative_regression_test : public RegressionTest
  {
    motion_derivative_regression_test(const char* name) : RegressionTest(name) {
      registerRegressionTest(this);
    }

    std::mt19937_64 rng;

    inline float rand01()
    {
      std::uniform_real_distribution<float> dist(0.f, 1.f);
      return dist(rng);
    }

    bool valid(float v)
    {
      if (std::isnan(v) && !std::isfinite(v))
      {
        //printf("value not valid %f\n", v);
        return false;
      }
      return true;
    }

    inline Vec3fa random_axis()
    {
      float x = 2.f * rand01() - 1.f;
      float y = 2.f * rand01() - 1.f;
      float z = x*x+y*y > 0.995 ? 0.f : std::sqrt(1 - x*x - y*y);
      Vec3fa axis(x, y, z);
      return normalize(axis);
    }

    inline float random_scale()
    {
      float xi = 20.f * rand01() - 10.f;
      if (xi < 0) xi -= 0.001f;
      if (xi >= 0) xi += 0.001f;
      return xi;
    }

    inline AffineSpace3fa random_quaternion_decomposition()
    {
      Vec3fa T(20.f * rand01() - 10.f, 20.f * rand01() - 10.f, 20.f * rand01() - 10.f);
      Quaternion3f q = Quaternion3f::rotate(random_axis(), 4.f * M_PI * rand01() - 2.f * M_PI);
      AffineSpace3fa S(one);
      S.p = Vec3fa(20.f * rand01() - 10.f, 20.f * rand01() - 10.f, 20.f * rand01() - 10.f);
      S.l.vx.x = random_scale();
      S.l.vy.y = random_scale();
      S.l.vz.z = random_scale();
      S.l.vy.x = 2.f * rand01() - 1.f;
      S.l.vz.x = 2.f * rand01() - 1.f;
      S.l.vz.y = 2.f * rand01() - 1.f;
      return quaternionDecomposition(T, q, S);
    }

    bool testMDC(MotionDerivativeCoefficients const& mdc)
    {
      if (!valid(mdc.theta)) return false;
      for (int i = 0; i < 3*8*7; ++i)
      {
        if(!valid(mdc.coeffs[i])) return false;
      }

      unsigned int maxNumRoots = 32;
      float roots[32];
      for (int j = 0; j < 32; ++j)
      {
        Vec3fa p0(20.f * rand01() - 10.f, 20.f * rand01() - 10.f, 20.f * rand01() - 10.f);
        Vec3fa p1(20.f * rand01() - 10.f, 20.f * rand01() - 10.f, 20.f * rand01() - 10.f);
        float offset = 20.f * rand01() - 10.f;

        for (int dim = 0; dim < 3; ++dim) {
          MotionDerivative md(mdc, dim, p0, rand01() > 0.5f ? p1 : p0);
          float tmin = 2.f * rand01() - 1.f;
          float tmax = tmin + rand01();
          Interval1f interval(tmin, tmax);
          unsigned int num_roots = md.findRoots(interval, offset, roots, maxNumRoots);
          if (num_roots >= maxNumRoots) {
            return false;
          }
          for (unsigned int i = 0; i < min(num_roots, maxNumRoots); ++i) {
            if(!valid(roots[i])) return false;
            if(!(roots[i] >= tmin && roots[i] <= tmax)) return false;
          }
        }
      }

      return true;
    }

    bool run ()
    {
      bool passed = true;
#if 0
      std::random_device device;
      size_t seed = device();
#else
      // tests fails for this seed if MOTION_DERIVATIVE_ROOT_EPSILON is 1e-6f instead of 1e-4f
      size_t seed = 2973843361;
#endif
      rng.seed(seed);

      ////////////////////////////////////////////////////////////////////////////////
      // test root solver
      ////////////////////////////////////////////////////////////////////////////////
      unsigned int maxNumRoots = 32;
      float roots[32];
      {
        struct EvalFunc { Interval1f operator()(Interval1f const& t) const {
            return (t - 1.0) * (t + 1.0);
        }};
        Interval1f I(-2.f, 2.f);
        unsigned int numRoots = 0;
        MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots);
        if (numRoots != 2) return false;
        if (abs(roots[0]+1.f) > 1e6f) return false;
        if (abs(roots[1]-1.f) > 1e6f) return false;
      }
      {
        struct EvalFunc { Interval1f operator()(Interval1f const& t) const {
          return (t - 1.0f) * (t + 1.0f) * (t + 0.99999f);
        }};
        Interval1f I(-2.f, 2.f);
        unsigned int numRoots = 0;
        MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots);
        if (numRoots != 2) return false;
      }
      {
        struct EvalFunc { Interval1f operator()(Interval1f const& t) const {
          return (t - 1.0f) * (t + 1.0f) * (t + 0.9999f);
        }};
        Interval1f I(-2.f, 2.f);
        unsigned int numRoots = 0;
        MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots);
        if (numRoots != 3) return false;
      }
      {
        struct EvalFunc { Interval1f operator()(Interval1f const& t) const {
          return (-7.831048f) + (70.619041f) + (-116.007454f) * t
            + ((-198.235809f) + ( 411.193054f) * t + (-160.020020f) * t * t) * cos(5.438017f * t)
            + ((-320.571472f) + ( 786.181946f) * t + (-559.993164f) * t * t) * sin(5.438017f * t);
        }};
        Interval1f I(0.5, 1.4f);
        unsigned int numRoots = 0;
        MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots);
        if (numRoots != 3) return false;
      }
      {
        struct EvalFunc { Interval1f operator()(Interval1f const& t) const {
          return sin(t) * cos(t-1.0f) * 50 * (t-2.0f) * (t-4.0f);
        }};
        Interval1f I(0.0, 7.0f);
        unsigned int numRoots = 0;
        MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots);
        if (numRoots != 7) return false;
      }
      {
        struct EvalFunc { Interval1f operator()(Interval1f const& t) const {
          return sin(t) * cos(t-1) * 0.0000001f * (t-2.0f) * (t-4.0f);
        }};
        Interval1f I(0.0, 7.0f);
        unsigned int numRoots = 0;
        MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots);
        if (numRoots != 7) return false;
      }
      {
        // all roots are of the form n*PI/10 for n = 0, 1, 2, ...
        // the function values vary from 0 to 3000
        // in a plot everything from 0 to 0.5 looks like constant zero
        struct EvalFunc { Interval1f operator()(Interval1f const& t) const {
          return sin(10.0f * t) * 100.0f * t*t*t*t*t;
        }};
        Interval1f I(0.0, 2.0f);
        unsigned int numRoots = 0;
        MotionDerivative::findRoots(EvalFunc(), I, numRoots, roots, maxNumRoots);
        if (numRoots != 7) return false;
        for (int i = 0; i < 7; ++i) {
          if (abs(roots[i]-(i*M_PI)/10.f) > 1e-6f)
            return false;
        }
      }

      ////////////////////////////////////////////////////////////////////////////////
      // test motion derivative coefficients
      ////////////////////////////////////////////////////////////////////////////////
      const size_t numTests = 64;

      // test completely random transformations
      for (int j = 0; j < numTests; ++j)
      {
        AffineSpace3fa M0 = random_quaternion_decomposition();
        AffineSpace3fa M1 = random_quaternion_decomposition();
        if (!testMDC(MotionDerivativeCoefficients(M0, M1))) return false;
        if (!testMDC(MotionDerivativeCoefficients(M0, M0))) return false;
      }

      // test transformations with slightly different rotation angles
      for (int j = 0; j < numTests; ++j)
      {
        Vec3fa axis = random_axis();
        float angle = 2.f * M_PI * (2.f * rand01() - 1.f);
        AffineSpace3fa S(one);
        Vec3fa T(0.f);

        for (int k = 0; k < 16; ++k)
        {
          float eps = pow(0.1f, k);
          Quaternion3f q0 = Quaternion3f::rotate(axis, angle);
          Quaternion3f q1 = Quaternion3f::rotate(axis, angle + (rand01() > 0.5f ? -1.f : 1.f) * k * eps);
          AffineSpace3fa M0 = quaternionDecomposition(T, q0, S);
          AffineSpace3fa M1 = quaternionDecomposition(T, q1, S);
          if (!testMDC(MotionDerivativeCoefficients(M0, M1))) return false;
          if (!testMDC(MotionDerivativeCoefficients(M0, M0))) return false;
        }
      }


      return passed;
    }
  };

  motion_derivative_regression_test motion_derivative_ilter_regression("motion_derivative_regression");
}