1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "scene_instance.h"
#include "scene.h"
#include "motion_derivative.h"
namespace embree
{
#if defined(EMBREE_LOWEST_ISA)
Instance::Instance (Device* device, Accel* object, unsigned int numTimeSteps)
: Geometry(device,Geometry::GTY_INSTANCE_CHEAP,1,numTimeSteps)
, object(object)
, local2world(nullptr)
{
if (object) object->refInc();
gsubtype = GTY_SUBTYPE_INSTANCE_LINEAR;
world2local0 = one;
device->memoryMonitor(numTimeSteps*sizeof(AffineSpace3ff), false);
local2world = (AffineSpace3ff*) device->malloc(numTimeSteps*sizeof(AffineSpace3ff),16,EmbreeMemoryType::MALLOC);
for (size_t i = 0; i < numTimeSteps; i++)
local2world[i] = one;
device->memoryMonitor(sizeof(*this), false);
}
Instance::~Instance()
{
device->free(local2world);
device->memoryMonitor(-ssize_t(numTimeSteps*sizeof(AffineSpace3ff)), true);
if (object) object->refDec();
device->memoryMonitor(-sizeof(*this), false);
}
void Instance::setNumTimeSteps (unsigned int numTimeSteps_in)
{
if (numTimeSteps_in == numTimeSteps)
return;
device->memoryMonitor(numTimeSteps_in*sizeof(AffineSpace3ff), false);
AffineSpace3ff* local2world2 = (AffineSpace3ff*) device->malloc(numTimeSteps_in*sizeof(AffineSpace3ff),16,EmbreeMemoryType::MALLOC);
for (size_t i = 0; i < min(numTimeSteps, numTimeSteps_in); i++) {
local2world2[i] = local2world[i];
}
for (size_t i = numTimeSteps; i < numTimeSteps_in; i++) {
local2world2[i] = one;
}
device->free(local2world);
device->memoryMonitor(-ssize_t(numTimeSteps*sizeof(AffineSpace3ff)), true);
local2world = local2world2;
Geometry::setNumTimeSteps(numTimeSteps_in);
}
void Instance::setInstancedScene(const Ref<Scene>& scene)
{
if (object) object->refDec();
object = scene.ptr;
if (object) object->refInc();
Geometry::update();
}
#if 0
void Instance::preCommit()
{
#if 0 // disable expensive instance optimization for now
// decide whether we're an expensive instance or not
auto numExpensiveGeo = static_cast<Scene*> (object)->getNumPrimitives(CurveGeometry::geom_type, false)
+ static_cast<Scene*> (object)->getNumPrimitives(CurveGeometry::geom_type, true)
+ static_cast<Scene*> (object)->getNumPrimitives(UserGeometry::geom_type, false)
+ static_cast<Scene*> (object)->getNumPrimitives(UserGeometry::geom_type, true);
if (numExpensiveGeo > 0) {
this->gtype = GTY_INSTANCE_EXPENSIVE;
}
#endif
Geometry::preCommit();
}
#endif
void Instance::addElementsToCount (GeometryCounts & counts) const
{
if (Geometry::GTY_INSTANCE_CHEAP == this->gtype) {
if (1 == numTimeSteps) {
counts.numInstancesCheap += numPrimitives;
} else {
counts.numMBInstancesCheap += numPrimitives;
}
} else {
if (1 == numTimeSteps) {
counts.numInstancesExpensive += numPrimitives;
} else {
counts.numMBInstancesExpensive += numPrimitives;
}
}
}
void Instance::setTransform(const AffineSpace3fa& xfm, unsigned int timeStep)
{
if (timeStep >= numTimeSteps)
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"invalid timestep");
local2world[timeStep] = xfm;
gsubtype = GTY_SUBTYPE_INSTANCE_LINEAR;
Geometry::update();
}
void Instance::setQuaternionDecomposition(const AffineSpace3ff& qd, unsigned int timeStep)
{
if (timeStep >= numTimeSteps)
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"invalid timestep");
local2world[timeStep] = qd;
gsubtype = GTY_SUBTYPE_INSTANCE_QUATERNION;
Geometry::update();
}
AffineSpace3fa Instance::getTransform(float time)
{
if (likely(numTimeSteps <= 1))
return getLocal2World();
else
return getLocal2World(time);
}
AffineSpace3fa Instance::getTransform(size_t i, float time)
{
if (i != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "instance has only primitive 0.");
if (likely(numTimeSteps <= 1))
return getLocal2World();
else
return getLocal2World(time);
}
void Instance::setMask (unsigned mask)
{
this->mask = mask;
Geometry::update();
}
void Instance::commit()
{
if (!object)
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"Instanced scene is not set. Use rtcSetGeometryInstancedScene to set the scene to instance.");
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
world2local0 = rcp(quaternionDecompositionToAffineSpace(local2world[0]));
else
world2local0 = rcp(local2world[0]);
Geometry::commit();
}
size_t Instance::getGeometryDataDeviceByteSize() const {
return 16 * (((sizeof(Instance) + numTimeSteps * sizeof(AffineSpace3ff)) + 15) / 16);
}
void Instance::convertToDeviceRepresentation(size_t offset, char* data_host, char* data_device) const {
// save offset for later when overriding local2world with device ptr
size_t offsetInstance = offset;
std::memcpy(data_host + offsetInstance, (void*)this, sizeof(Instance));
offset += sizeof(Instance);
for (size_t t = 0; t < numTimeSteps; ++t) {
std::memcpy(data_host + offset, &(local2world[t]), sizeof(AffineSpace3ff));
offset += sizeof(AffineSpace3ff);
}
// override local2world value with device ptr in geometry_data_host
Instance* instance = (Instance*)(data_host + offsetInstance);
instance->object = ((Scene*)(instance->object))->getTraversable();
instance->local2world = (AffineSpace3ff*)(data_device + offsetInstance + sizeof(Instance));
}
/*
This function calculates the correction for the linear bounds
bbox0/bbox1 to properly bound the motion obtained when linearly
blending the transformation and applying the resulting
transformation to the linearly blended positions
lerp(xfm0,xfm1,t)*lerp(p0,p1,t). The extrema of the error to the
linearly blended bounds have to get calculates
f = lerp(xfm0,xfm1,t)*lerp(p0,p1,t) - lerp(bounds0,bounds1,t). For
the position where this error gets extreme we have to correct the
linear bounds. The derivative of this function f can get
calculates as
f' = (lerp(A0,A1,t) lerp(p0,p1,t))` - (lerp(bounds0,bounds1,t))`
= lerp'(A0,A1,t) lerp(p0,p1,t) + lerp(A0,A1,t) lerp'(p0,p1,t) - (bounds1-bounds0)
= (A1-A0) lerp(p0,p1,t) + lerp(A0,A1,t) (p1-p0) - (bounds1-bounds0)
= (A1-A0) (p0 + t*(p1-p0)) + (A0 + t*(A1-A0)) (p1-p0) - (bounds1-bounds0)
= (A1-A0) * p0 + t*(A1-A0)*(p1-p0) + A0*(p1-p0) + t*(A1-A0)*(p1-p0) - (bounds1-bounds0)
= (A1-A0) * p0 + A0*(p1-p0) - (bounds1-bounds0) + t* ((A1-A0)*(p1-p0) + (A1-A0)*(p1-p0))
The t value where this function has an extremal point is thus:
=> t = - ((A1-A0) * p0 + A0*(p1-p0) + (bounds1-bounds0)) / (2*(A1-A0)*(p1-p0))
= (2*A0*p0 - A1*p0 - A0*p1 + (bounds1-bounds0)) / (2*(A1-A0)*(p1-p0))
*/
BBox3fa boundSegmentLinear(AffineSpace3fa const& xfm0,
AffineSpace3fa const& xfm1,
BBox3fa const& obbox0,
BBox3fa const& obbox1,
BBox3fa const& bbox0,
BBox3fa const& bbox1,
float tmin,
float tmax)
{
BBox3fa delta(Vec3fa(0.f), Vec3fa(0.f));
// loop over bounding box corners
for (int ii = 0; ii < 2; ++ii)
for (int jj = 0; jj < 2; ++jj)
for (int kk = 0; kk < 2; ++kk)
{
Vec3fa p0(ii == 0 ? obbox0.lower.x : obbox0.upper.x,
jj == 0 ? obbox0.lower.y : obbox0.upper.y,
kk == 0 ? obbox0.lower.z : obbox0.upper.z);
Vec3fa p1(ii == 0 ? obbox1.lower.x : obbox1.upper.x,
jj == 0 ? obbox1.lower.y : obbox1.upper.y,
kk == 0 ? obbox1.lower.z : obbox1.upper.z);
// get extrema of motion of bounding box corner for each dimension
const Vec3fa denom = 2.0 * xfmVector(xfm0 - xfm1, p0 - p1);
const Vec3fa nom = 2.0 * xfmPoint (xfm0, p0) - xfmPoint(xfm0, p1) - xfmPoint(xfm1, p0);
for (int dim = 0; dim < 3; ++dim)
{
if (!(std::abs(denom[dim]) > 0)) continue;
const float tl = (nom[dim] + (bbox1.lower[dim] - bbox0.lower[dim])) / denom[dim];
if (tmin <= tl && tl <= tmax) {
const BBox3fa bt = lerp(bbox0, bbox1, tl);
const Vec3fa pt = xfmPoint (lerp(xfm0, xfm1, tl), lerp(p0, p1, tl));
delta.lower[dim] = std::min(delta.lower[dim], pt[dim] - bt.lower[dim]);
}
const float tu = (nom[dim] + (bbox1.upper[dim] - bbox0.upper[dim])) / denom[dim];
if (tmin <= tu && tu <= tmax) {
const BBox3fa bt = lerp(bbox0, bbox1, tu);
const Vec3fa pt = xfmPoint(lerp(xfm0, xfm1, tu), lerp(p0, p1, tu));
delta.upper[dim] = std::max(delta.upper[dim], pt[dim] - bt.upper[dim]);
}
}
}
return delta;
}
/*
This function calculates the correction for the linear bounds
bbox0/bbox1 to properly bound the motion obtained by linearly
blending the quaternion transformations and applying the
resulting transformation to the linearly blended positions. The
extrema of the error to the linearly blended bounds has to get
calclated, the the linear bounds get corrected at the extremal
points. In difference to the previous function the extremal
points cannot get calculated analytically, thus we fall back to
some root solver.
*/
BBox3fa boundSegmentNonlinear(MotionDerivativeCoefficients const& motionDerivCoeffs,
AffineSpace3fa const& xfm0,
AffineSpace3fa const& xfm1,
BBox3fa const& obbox0,
BBox3fa const& obbox1,
BBox3fa const& bbox0,
BBox3fa const& bbox1,
float tmin,
float tmax)
{
BBox3fa delta(Vec3fa(0.f), Vec3fa(0.f));
float roots[32];
unsigned int maxNumRoots = 32;
unsigned int numRoots;
const Interval1f interval(tmin, tmax);
// loop over bounding box corners
for (int ii = 0; ii < 2; ++ii)
for (int jj = 0; jj < 2; ++jj)
for (int kk = 0; kk < 2; ++kk)
{
Vec3fa p0(ii == 0 ? obbox0.lower.x : obbox0.upper.x,
jj == 0 ? obbox0.lower.y : obbox0.upper.y,
kk == 0 ? obbox0.lower.z : obbox0.upper.z);
Vec3fa p1(ii == 0 ? obbox1.lower.x : obbox1.upper.x,
jj == 0 ? obbox1.lower.y : obbox1.upper.y,
kk == 0 ? obbox1.lower.z : obbox1.upper.z);
// get extrema of motion of bounding box corner for each dimension
for (int dim = 0; dim < 3; ++dim)
{
MotionDerivative motionDerivative(motionDerivCoeffs, dim, p0, p1);
numRoots = motionDerivative.findRoots(interval, bbox0.lower[dim] - bbox1.lower[dim], roots, maxNumRoots);
for (unsigned int r = 0; r < numRoots; ++r) {
float t = roots[r];
const BBox3fa bt = lerp(bbox0, bbox1, t);
const Vec3fa pt = xfmPoint(slerp(xfm0, xfm1, t), lerp(p0, p1, t));
delta.lower[dim] = std::min(delta.lower[dim], pt[dim] - bt.lower[dim]);
}
numRoots = motionDerivative.findRoots(interval, bbox0.upper[dim] - bbox1.upper[dim], roots, maxNumRoots);
for (unsigned int r = 0; r < numRoots; ++r) {
float t = roots[r];
const BBox3fa bt = lerp(bbox0, bbox1, t);
const Vec3fa pt = xfmPoint(slerp(xfm0, xfm1, t), lerp(p0, p1, t));
delta.upper[dim] = std::max(delta.upper[dim], pt[dim] - bt.upper[dim]);
}
}
}
return delta;
}
BBox3fa Instance::boundSegment(size_t itime,
BBox3fa const& obbox0, BBox3fa const& obbox1,
BBox3fa const& bbox0, BBox3fa const& bbox1,
float tmin, float tmax) const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION)) {
auto const& xfm0 = local2world[itime];
auto const& xfm1 = local2world[itime+1];
MotionDerivativeCoefficients motionDerivCoeffs(local2world[itime+0], local2world[itime+1]);
return boundSegmentNonlinear(motionDerivCoeffs, xfm0, xfm1, obbox0, obbox1, bbox0, bbox1, tmin, tmax);
} else {
auto const& xfm0 = local2world[itime];
auto const& xfm1 = local2world[itime+1];
return boundSegmentLinear(xfm0, xfm1, obbox0, obbox1, bbox0, bbox1, tmin, tmax);
}
}
LBBox3fa Instance::nonlinearBounds(const BBox1f& time_range_in,
const BBox1f& geom_time_range,
float geom_time_segments) const
{
LBBox3fa lbbox = empty;
/* normalize global time_range_in to local geom_time_range */
const BBox1f time_range((time_range_in.lower-geom_time_range.lower)/geom_time_range.size(),
(time_range_in.upper-geom_time_range.lower)/geom_time_range.size());
const float lower = time_range.lower*geom_time_segments;
const float upper = time_range.upper*geom_time_segments;
const float ilowerf = floor(lower);
const float iupperf = ceil(upper);
const float ilowerfc = max(0.0f,ilowerf);
const float iupperfc = min(iupperf,geom_time_segments);
const int ilowerc = (int)ilowerfc;
const int iupperc = (int)iupperfc;
assert(iupperc-ilowerc > 0);
/* this larger iteration range guarantees that we process borders of geom_time_range is (partially) inside time_range_in */
const int ilower_iter = max(-1,(int)ilowerf);
const int iupper_iter = min((int)iupperf,(int)geom_time_segments+1);
if (iupper_iter-ilower_iter == 1)
{
const float f0 = (ilowerc / geom_time_segments - time_range.lower) / time_range.size();
const float f1 = (iupperc / geom_time_segments - time_range.lower) / time_range.size();
lbbox.bounds0 = bounds(ilowerc, iupperc, max(0.0f,lower-ilowerfc));
lbbox.bounds1 = bounds(iupperc, ilowerc, max(0.0f,iupperfc-upper));
const BBox3fa d = boundSegment(ilowerc, getObjectBounds(ilowerc), getObjectBounds(iupperc),
lerp(lbbox.bounds0, lbbox.bounds1, f0), lerp(lbbox.bounds0, lbbox.bounds1, f1),
max(0.f, lower-ilowerfc), 1.f - max(0.f, iupperfc-upper));
lbbox.bounds0.lower += d.lower; lbbox.bounds1.lower += d.lower;
lbbox.bounds0.upper += d.upper; lbbox.bounds1.upper += d.upper;
}
else
{
BBox3fa b0 = bounds(ilowerc, ilowerc+1, lower-ilowerfc);
BBox3fa b1 = bounds(iupperc, iupperc-1, iupperfc-upper);
for (int i = ilower_iter+1; i < iupper_iter; i++)
{
const float f = (float(i) / geom_time_segments - time_range.lower) / time_range.size();
const BBox3fa bt = lerp(b0, b1, f);
const BBox3fa bi = bounds(0, i);
const Vec3fa dlower = min(bi.lower-bt.lower, Vec3fa(zero));
const Vec3fa dupper = max(bi.upper-bt.upper, Vec3fa(zero));
b0.lower += dlower; b1.lower += dlower;
b0.upper += dupper; b1.upper += dupper;
}
BBox3fa delta(Vec3fa(0.f), Vec3fa(0.f));
for (int i = max(1, ilower_iter+1); i <= min((int)fnumTimeSegments, iupper_iter); i++)
{
// compute local times for local itimes
const float f0 = ((i-1) / geom_time_segments - time_range.lower) / time_range.size();
const float f1 = ((i ) / geom_time_segments - time_range.lower) / time_range.size();
const float tmin = (i == max(1, ilower_iter+1)) ? max(0.f, lower-ilowerfc) : 0.f;
const float tmax = (i == max(1, min((int)fnumTimeSegments, iupper_iter))) ? 1.f - max(0.f, iupperfc-upper) : 1.f;
const BBox3fa d = boundSegment(i-1, getObjectBounds(i-1), getObjectBounds(i),
lerp(b0, b1, f0), lerp(b0, b1, f1), tmin, tmax);
delta.lower = min(delta.lower, d.lower);
delta.upper = max(delta.upper, d.upper);
}
b0.lower += delta.lower; b1.lower += delta.lower;
b0.upper += delta.upper; b1.upper += delta.upper;
lbbox.bounds0 = b0;
lbbox.bounds1 = b1;
}
return lbbox;
}
#endif
namespace isa
{
Instance* createInstance(Device* device) {
return new InstanceISA(device);
}
}
}
|