1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "scene_points.h"
#include "scene.h"
namespace embree
{
#if defined(EMBREE_LOWEST_ISA)
Points::Points(Device* device, Geometry::GType gtype) : Geometry(device, gtype, 0, 1)
{
vertices.resize(numTimeSteps);
if (getType() == GTY_ORIENTED_DISC_POINT)
normals.resize(numTimeSteps);
}
void Points::setMask(unsigned mask)
{
this->mask = mask;
Geometry::update();
}
void Points::setNumTimeSteps(unsigned int numTimeSteps)
{
vertices.resize(numTimeSteps);
if (getType() == GTY_ORIENTED_DISC_POINT)
normals.resize(numTimeSteps);
Geometry::setNumTimeSteps(numTimeSteps);
}
void Points::setVertexAttributeCount(unsigned int N)
{
vertexAttribs.resize(N);
Geometry::update();
}
void Points::setBuffer(RTCBufferType type,
unsigned int slot,
RTCFormat format,
const Ref<Buffer>& buffer,
size_t offset,
size_t stride,
unsigned int num)
{
/* verify that all accesses are 4 bytes aligned */
if ((type != RTC_BUFFER_TYPE_FLAGS) && (((size_t(buffer->getHostPtr()) + offset) & 0x3) || (stride & 0x3)))
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "data must be 4 bytes aligned");
if (type == RTC_BUFFER_TYPE_VERTEX) {
if (format != RTC_FORMAT_FLOAT4)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex buffer format");
if (slot >= vertices.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid vertex buffer slot");
vertices[slot].set(buffer, offset, stride, num, format);
vertices[slot].checkPadding16();
setNumPrimitives(num);
} else if (type == RTC_BUFFER_TYPE_NORMAL) {
if (getType() != GTY_ORIENTED_DISC_POINT)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
if (format != RTC_FORMAT_FLOAT3)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid normal buffer format");
if (slot >= normals.size())
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid normal buffer slot");
normals[slot].set(buffer, offset, stride, num, format);
normals[slot].checkPadding16();
} else if (type == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
if (format < RTC_FORMAT_FLOAT || format > RTC_FORMAT_FLOAT16)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex attribute buffer format");
if (slot >= vertexAttribs.size())
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex attribute buffer slot");
vertexAttribs[slot].set(buffer, offset, stride, num, format);
vertexAttribs[slot].checkPadding16();
} else
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
}
void* Points::getBufferData(RTCBufferType type, unsigned int slot, BufferDataPointerType pointerType)
{
if (type == RTC_BUFFER_TYPE_VERTEX) {
if (slot >= vertices.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return vertices[slot].getPtr(pointerType);
} else if (type == RTC_BUFFER_TYPE_NORMAL) {
if (slot >= normals.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return normals[slot].getPtr(pointerType);
} else if (type == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
if (slot >= vertexAttribs.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return vertexAttribs[slot].getPtr(pointerType);
} else {
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
return nullptr;
}
}
void Points::updateBuffer(RTCBufferType type, unsigned int slot)
{
if (type == RTC_BUFFER_TYPE_VERTEX) {
if (slot >= vertices.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
vertices[slot].setModified();
} else if (type == RTC_BUFFER_TYPE_NORMAL) {
if (slot >= normals.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
normals[slot].setModified();
} else if (type == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
if (slot >= vertexAttribs.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
vertexAttribs[slot].setModified();
} else {
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
}
Geometry::update();
}
void Points::setMaxRadiusScale(float s) {
maxRadiusScale = s;
}
void Points::commit()
{
/* verify that stride of all time steps are identical */
for (unsigned int t = 0; t < numTimeSteps; t++) {
if (vertices[t].getStride() != vertices[0].getStride())
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "stride of vertex buffers have to be identical for each time step");
vertices[t].buffer->commitIfNeeded();
}
for (auto& buffer : normals) {
if (buffer.getStride() != normals[0].getStride())
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "stride of normal buffers have to be identical for each time step");
buffer.buffer->commitIfNeeded();
}
vertices0 = vertices[0];
if (getType() == GTY_ORIENTED_DISC_POINT)
normals0 = normals[0];
Geometry::commit();
}
void Points::addElementsToCount (GeometryCounts & counts) const
{
if (numTimeSteps == 1)
counts.numPoints += numPrimitives;
else
counts.numMBPoints += numPrimitives;
}
bool Points::verify()
{
/*! verify consistent size of vertex arrays */
if (vertices.size() == 0)
return false;
for (const auto& buffer : vertices)
if (buffer.size() != numVertices())
return false;
if (getType() == GTY_ORIENTED_DISC_POINT) {
if (normals.size() == 0)
return false;
for (const auto& buffer : normals)
if (vertices[0].size() != buffer.size())
return false;
} else {
if (normals.size())
return false;
}
/*! verify vertices */
for (const auto& buffer : vertices) {
for (size_t i = 0; i < buffer.size(); i++) {
if (!isvalid(buffer[i].x))
return false;
if (!isvalid(buffer[i].y))
return false;
if (!isvalid(buffer[i].z))
return false;
if (!isvalid(buffer[i].w))
return false;
}
}
return true;
}
size_t Points::getGeometryDataDeviceByteSize() const {
size_t byte_size = sizeof(Points);
if (vertices.size() > 0)
byte_size += numTimeSteps * sizeof(BufferView<Vec3ff>);
if (normals.size() > 0)
byte_size += numTimeSteps * sizeof(BufferView<Vec3fa>);
return 16 * ((byte_size + 15) / 16);
}
void Points::convertToDeviceRepresentation(size_t offset, char* data_host, char* data_device) const {
Points* points = (Points*)(data_host + offset);
std::memcpy(data_host + offset, (void*)this, sizeof(Points));
offset += sizeof(Points);
if (vertices.size() > 0) {
const size_t offsetVertices = offset;
for (size_t t = 0; t < numTimeSteps; ++t) {
std::memcpy(data_host + offset, &(vertices[t]), sizeof(BufferView<Vec3ff>));
offset += sizeof(BufferView<Vec3ff>);
}
points->vertices.setDataPtr((BufferView<Vec3ff>*)(data_device + offsetVertices));
}
if (normals.size() > 0) {
const size_t offsetNormals = offset;
for (size_t t = 0; t < numTimeSteps; ++t) {
std::memcpy(data_host + offset, &(normals[t]), sizeof(BufferView<Vec3fa>));
offset += sizeof(BufferView<Vec3fa>);
}
points->normals.setDataPtr((BufferView<Vec3fa>*)(data_device + offsetNormals));
}
}
#endif
namespace isa
{
Points* createPoints(Device* device, Geometry::GType gtype)
{
return new PointsISA(device, gtype);
}
} // namespace isa
} // namespace embree
|