1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "scene_subdiv_mesh.h"
#include "scene.h"
#include "../subdiv/patch_eval.h"
#include "../subdiv/patch_eval_simd.h"
#include "../../common/algorithms/parallel_map.h"
#include "../../common/algorithms/parallel_set.h"
#include "../../common/algorithms/parallel_sort.h"
#include "../../common/algorithms/parallel_prefix_sum.h"
#include "../../common/algorithms/parallel_for.h"
/*! maximum number of user vertex buffers for subdivision surfaces */
#define RTC_MAX_USER_VERTEX_BUFFERS 65536
namespace embree
{
#if defined(EMBREE_LOWEST_ISA)
struct VertexCreaseMap {
parallel_map<uint32_t,float> vertexCreaseMap;
};
struct EdgeCreaseMap {
parallel_map<uint64_t,float> edgeCreaseMap;
};
struct HoleSet{
parallel_set<uint32_t> holeSet;
};
SubdivMesh::SubdivMesh (Device* device)
: Geometry(device,GTY_SUBDIV_MESH,0,1),
displFunc(nullptr),
tessellationRate(2.0f),
numHalfEdges(0),
faceStartEdge(device,0),
halfEdgeFace(device,0),
holeSet(new HoleSet),
invalid_face(device,0),
vertexCreaseMap(new VertexCreaseMap),
edgeCreaseMap(new EdgeCreaseMap),
commitCounter(0)
{
vertices.resize(numTimeSteps);
vertex_buffer_tags.resize(numTimeSteps);
topology.resize(1);
topology[0] = Topology(this);
}
SubdivMesh::~SubdivMesh() {}
void SubdivMesh::addElementsToCount (GeometryCounts & counts) const
{
if (numTimeSteps == 1) counts.numSubdivPatches += numPrimitives;
else counts.numMBSubdivPatches += numPrimitives;
}
void SubdivMesh::setMask (unsigned mask)
{
this->mask = mask;
Geometry::update();
}
void SubdivMesh::setSubdivisionMode (unsigned topologyID, RTCSubdivisionMode mode)
{
if (topologyID >= topology.size())
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"invalid topology ID");
topology[topologyID].setSubdivisionMode(mode);
Geometry::update();
}
void SubdivMesh::setVertexAttributeTopology(unsigned int vertexAttribID, unsigned int topologyID)
{
if (vertexAttribID < vertexAttribs.size()){
if (topologyID < topology.size()) {
if ((unsigned)vertexAttribs[vertexAttribID].userData != topologyID) {
vertexAttribs[vertexAttribID].userData = topologyID;
commitCounter++; // triggers recalculation of cached interpolation data
}
} else {
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid topology specified");
}
} else {
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex attribute specified");
}
}
void SubdivMesh::setNumTimeSteps (unsigned int numTimeSteps)
{
vertices.resize(numTimeSteps);
vertex_buffer_tags.resize(numTimeSteps);
Geometry::setNumTimeSteps(numTimeSteps);
}
void SubdivMesh::setVertexAttributeCount (unsigned int N)
{
vertexAttribs.resize(N);
vertex_attrib_buffer_tags.resize(N);
Geometry::update();
}
void SubdivMesh::setTopologyCount (unsigned int N)
{
if (N == 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT,"at least one topology has to exist")
size_t begin = topology.size();
topology.resize(N);
for (size_t i = begin; i < topology.size(); i++)
topology[i] = Topology(this);
}
void SubdivMesh::setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num)
{
/* verify that all accesses are 4 bytes aligned */
if (((size_t(buffer->getHostPtr()) + offset) & 0x3) || (stride & 0x3))
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "data must be 4 bytes aligned");
if (type != RTC_BUFFER_TYPE_LEVEL)
commitCounter++;
if (type == RTC_BUFFER_TYPE_VERTEX)
{
if (format != RTC_FORMAT_FLOAT3)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex buffer format");
if (slot >= vertices.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid vertex buffer slot");
vertices[slot].set(buffer, offset, stride, num, format);
vertices[slot].checkPadding16();
}
else if (type == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE)
{
if (format < RTC_FORMAT_FLOAT || format > RTC_FORMAT_FLOAT16)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex attribute buffer format");
if (slot >= vertexAttribs.size())
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex attribute buffer slot");
vertexAttribs[slot].set(buffer, offset, stride, num, format);
vertexAttribs[slot].checkPadding16();
}
else if (type == RTC_BUFFER_TYPE_FACE)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
if (format != RTC_FORMAT_UINT)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid face buffer format");
faceVertices.set(buffer, offset, stride, num, format);
setNumPrimitives(num);
}
else if (type == RTC_BUFFER_TYPE_INDEX)
{
if (format != RTC_FORMAT_UINT)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid face buffer format");
if (slot >= topology.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid index buffer slot");
topology[slot].vertexIndices.set(buffer, offset, stride, num, format);
}
else if (type == RTC_BUFFER_TYPE_EDGE_CREASE_INDEX)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
if (format != RTC_FORMAT_UINT2)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid edge crease index buffer format");
edge_creases.set(buffer, offset, stride, num, format);
}
else if (type == RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
if (format != RTC_FORMAT_FLOAT)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid edge crease weight buffer format");
edge_crease_weights.set(buffer, offset, stride, num, format);
}
else if (type == RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
if (format != RTC_FORMAT_UINT)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex crease index buffer format");
vertex_creases.set(buffer, offset, stride, num, format);
}
else if (type == RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
if (format != RTC_FORMAT_FLOAT)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex crease weight buffer format");
vertex_crease_weights.set(buffer, offset, stride, num, format);
}
else if (type == RTC_BUFFER_TYPE_HOLE)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
if (format != RTC_FORMAT_UINT)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid hole buffer format");
holes.set(buffer, offset, stride, num, format);
}
else if (type == RTC_BUFFER_TYPE_LEVEL)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
if (format != RTC_FORMAT_FLOAT)
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid level buffer format");
levels.set(buffer, offset, stride, num, format);
}
else
{
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT,"unknown buffer type");
}
}
void* SubdivMesh::getBufferData(RTCBufferType type, unsigned int slot, BufferDataPointerType pointerType)
{
if (type == RTC_BUFFER_TYPE_VERTEX)
{
if (slot >= vertices.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return vertices[slot].getPtr(pointerType);
}
else if (type == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE)
{
if (slot >= vertexAttribs.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return vertexAttribs[slot].getPtr(pointerType);
}
else if (type == RTC_BUFFER_TYPE_FACE)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return faceVertices.getPtr(pointerType);
}
else if (type == RTC_BUFFER_TYPE_INDEX)
{
if (slot >= topology.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return topology[slot].vertexIndices.getPtr(pointerType);
}
else if (type == RTC_BUFFER_TYPE_EDGE_CREASE_INDEX)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return edge_creases.getPtr(pointerType);
}
else if (type == RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return edge_crease_weights.getPtr(pointerType);
}
else if (type == RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return vertex_creases.getPtr(pointerType);
}
else if (type == RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return vertex_crease_weights.getPtr(pointerType);
}
else if (type == RTC_BUFFER_TYPE_HOLE)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return holes.getPtr(pointerType);
}
else if (type == RTC_BUFFER_TYPE_LEVEL)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
return levels.getPtr(pointerType);
}
else
{
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
return nullptr;
}
}
void SubdivMesh::updateBuffer(RTCBufferType type, unsigned int slot)
{
if (type != RTC_BUFFER_TYPE_LEVEL)
commitCounter++;
if (type == RTC_BUFFER_TYPE_VERTEX)
{
if (slot >= vertices.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
vertices[slot].setModified();
}
else if (type == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE)
{
if (slot >= vertexAttribs.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
vertexAttribs[slot].setModified();
}
else if (type == RTC_BUFFER_TYPE_FACE)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
faceVertices.setModified();
}
else if (type == RTC_BUFFER_TYPE_INDEX)
{
if (slot >= topology.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
topology[slot].vertexIndices.setModified();
}
else if (type == RTC_BUFFER_TYPE_EDGE_CREASE_INDEX)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
edge_creases.setModified();
}
else if (type == RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
edge_crease_weights.setModified();
}
else if (type == RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
vertex_creases.setModified();
}
else if (type == RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
vertex_crease_weights.setModified();
}
else if (type == RTC_BUFFER_TYPE_HOLE)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
holes.setModified();
}
else if (type == RTC_BUFFER_TYPE_LEVEL)
{
if (slot != 0)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
levels.setModified();
}
else
{
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
}
Geometry::update();
}
void SubdivMesh::setDisplacementFunction (RTCDisplacementFunctionN func)
{
this->displFunc = func;
}
void SubdivMesh::setTessellationRate(float N)
{
tessellationRate = N;
levels.setModified();
}
__forceinline uint64_t pair64(unsigned int x, unsigned int y)
{
if (x<y) std::swap(x,y);
return (((uint64_t)x) << 32) | (uint64_t)y;
}
SubdivMesh::Topology::Topology(SubdivMesh* mesh)
: mesh(mesh), subdiv_mode(RTC_SUBDIVISION_MODE_SMOOTH_BOUNDARY), halfEdges(mesh->device,0)
{
}
void SubdivMesh::Topology::setSubdivisionMode (RTCSubdivisionMode mode)
{
if (subdiv_mode == mode) return;
subdiv_mode = mode;
mesh->updateBuffer(RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT, 0);
}
void SubdivMesh::Topology::update () {
vertexIndices.setModified();
}
bool SubdivMesh::Topology::verify (size_t numVertices)
{
size_t ofs = 0;
for (size_t i=0; i<mesh->size(); i++)
{
int valence = mesh->faceVertices[i];
for (size_t j=ofs; j<ofs+valence; j++)
{
if (j >= vertexIndices.size())
return false;
if (vertexIndices[j] >= numVertices)
return false;
}
ofs += valence;
}
return true;
}
void SubdivMesh::Topology::calculateHalfEdges()
{
const size_t blockSize = 4096;
const size_t numEdges = mesh->numEdges();
const size_t numFaces = mesh->numFaces();
const size_t numHalfEdges = mesh->numHalfEdges;
/* allocate temporary array */
halfEdges0.resize(numEdges);
halfEdges1.resize(numEdges);
/* create all half edges */
parallel_for( size_t(0), numFaces, blockSize, [&](const range<size_t>& r)
{
for (size_t f=r.begin(); f<r.end(); f++)
{
const unsigned N = mesh->faceVertices[f];
const unsigned e = mesh->faceStartEdge[f];
for (unsigned de=0; de<N; de++)
{
HalfEdge* edge = &halfEdges[e+de];
int nextOfs = (de == (N-1)) ? -int(N-1) : +1;
int prevOfs = (de == 0) ? +int(N-1) : -1;
const unsigned int startVertex = vertexIndices[e+de];
const unsigned int endVertex = vertexIndices[e+de+nextOfs];
const uint64_t key = SubdivMesh::Edge(startVertex,endVertex);
/* we always have to use the geometry topology to lookup creases */
const unsigned int startVertex0 = mesh->topology[0].vertexIndices[e+de];
const unsigned int endVertex0 = mesh->topology[0].vertexIndices[e+de+nextOfs];
const uint64_t key0 = SubdivMesh::Edge(startVertex0,endVertex0);
edge->vtx_index = startVertex;
edge->next_half_edge_ofs = nextOfs;
edge->prev_half_edge_ofs = prevOfs;
edge->opposite_half_edge_ofs = 0;
edge->edge_crease_weight = mesh->edgeCreaseMap->edgeCreaseMap.lookup(key0,0.0f);
edge->vertex_crease_weight = mesh->vertexCreaseMap->vertexCreaseMap.lookup(startVertex0,0.0f);
edge->edge_level = mesh->getEdgeLevel(e+de);
edge->patch_type = HalfEdge::COMPLEX_PATCH; // type gets updated below
edge->vertex_type = HalfEdge::REGULAR_VERTEX;
if (unlikely(mesh->holeSet->holeSet.lookup(unsigned(f))))
halfEdges1[e+de] = SubdivMesh::KeyHalfEdge(std::numeric_limits<uint64_t>::max(),edge);
else
halfEdges1[e+de] = SubdivMesh::KeyHalfEdge(key,edge);
}
}
});
/* sort half edges to find adjacent edges */
radix_sort_u64(halfEdges1.data(),halfEdges0.data(),numHalfEdges);
/* link all adjacent pairs of edges */
parallel_for( size_t(0), numHalfEdges, blockSize, [&](const range<size_t>& r)
{
/* skip if start of adjacent edges was not in our range */
size_t e=r.begin();
if (e != 0 && (halfEdges1[e].key == halfEdges1[e-1].key)) {
const uint64_t key = halfEdges1[e].key;
while (e<r.end() && halfEdges1[e].key == key) e++;
}
/* process all adjacent edges starting in our range */
while (e<r.end())
{
const uint64_t key = halfEdges1[e].key;
if (key == std::numeric_limits<uint64_t>::max()) break;
size_t N=1; while (e+N<numHalfEdges && halfEdges1[e+N].key == key) N++;
/* border edges are identified by not having an opposite edge set */
if (N == 1) {
halfEdges1[e].edge->edge_crease_weight = float(inf);
}
/* standard edge shared between two faces */
else if (N == 2)
{
/* create edge crease if winding order mismatches between neighboring patches */
if (halfEdges1[e+0].edge->next()->vtx_index != halfEdges1[e+1].edge->vtx_index)
{
halfEdges1[e+0].edge->edge_crease_weight = float(inf);
halfEdges1[e+1].edge->edge_crease_weight = float(inf);
}
/* otherwise mark edges as opposites of each other */
else {
halfEdges1[e+0].edge->setOpposite(halfEdges1[e+1].edge);
halfEdges1[e+1].edge->setOpposite(halfEdges1[e+0].edge);
}
}
/* non-manifold geometry is handled by keeping vertices fixed during subdivision */
else {
for (size_t i=0; i<N; i++) {
halfEdges1[e+i].edge->vertex_crease_weight = inf;
halfEdges1[e+i].edge->vertex_type = HalfEdge::NON_MANIFOLD_EDGE_VERTEX;
halfEdges1[e+i].edge->edge_crease_weight = inf;
halfEdges1[e+i].edge->next()->vertex_crease_weight = inf;
halfEdges1[e+i].edge->next()->vertex_type = HalfEdge::NON_MANIFOLD_EDGE_VERTEX;
halfEdges1[e+i].edge->next()->edge_crease_weight = inf;
}
}
e+=N;
}
});
/* set subdivision mode and calculate patch types */
parallel_for( size_t(0), numFaces, blockSize, [&](const range<size_t>& r)
{
for (size_t f=r.begin(); f<r.end(); f++)
{
HalfEdge* edge = &halfEdges[mesh->faceStartEdge[f]];
/* for vertex topology we also test if vertices are valid */
if (this == &mesh->topology[0])
{
/* calculate if face is valid */
for (size_t t=0; t<mesh->numTimeSteps; t++)
mesh->invalidFace(f,t) = !edge->valid(mesh->vertices[t]) || mesh->holeSet->holeSet.lookup(unsigned(f));
}
/* pin some edges and vertices */
for (size_t i=0; i<mesh->faceVertices[f]; i++)
{
/* pin corner vertices when requested by user */
if (subdiv_mode == RTC_SUBDIVISION_MODE_PIN_CORNERS && edge[i].isCorner())
edge[i].vertex_crease_weight = float(inf);
/* pin all border vertices when requested by user */
else if (subdiv_mode == RTC_SUBDIVISION_MODE_PIN_BOUNDARY && edge[i].vertexHasBorder())
edge[i].vertex_crease_weight = float(inf);
/* pin all edges and vertices when requested by user */
else if (subdiv_mode == RTC_SUBDIVISION_MODE_PIN_ALL) {
edge[i].edge_crease_weight = float(inf);
edge[i].vertex_crease_weight = float(inf);
}
}
/* we have to calculate patch_type last! */
HalfEdge::PatchType patch_type = edge->patchType();
for (size_t i=0; i<mesh->faceVertices[f]; i++)
edge[i].patch_type = patch_type;
}
});
}
void SubdivMesh::Topology::updateHalfEdges()
{
/* we always use the geometry topology to lookup creases */
mvector<HalfEdge>& halfEdgesGeom = mesh->topology[0].halfEdges;
/* assume we do no longer recalculate in the future and clear these arrays */
halfEdges0.clear();
halfEdges1.clear();
/* calculate which data to update */
const bool updateEdgeCreases = mesh->topology[0].vertexIndices.isLocalModified() || mesh->edge_creases.isLocalModified() || mesh->edge_crease_weights.isLocalModified();
const bool updateVertexCreases = mesh->topology[0].vertexIndices.isLocalModified() || mesh->vertex_creases.isLocalModified() || mesh->vertex_crease_weights.isLocalModified();
const bool updateLevels = mesh->levels.isLocalModified();
/* parallel loop over all half edges */
parallel_for( size_t(0), mesh->numHalfEdges, size_t(4096), [&](const range<size_t>& r)
{
for (size_t i=r.begin(); i!=r.end(); i++)
{
HalfEdge& edge = halfEdges[i];
if (updateLevels)
edge.edge_level = mesh->getEdgeLevel(i);
if (updateEdgeCreases) {
if (edge.hasOpposite()) // leave weight at inf for borders
edge.edge_crease_weight = mesh->edgeCreaseMap->edgeCreaseMap.lookup((uint64_t)halfEdgesGeom[i].getEdge(),0.0f);
}
/* we only use user specified vertex_crease_weight if the vertex is manifold */
if (updateVertexCreases && edge.vertex_type != HalfEdge::NON_MANIFOLD_EDGE_VERTEX)
{
edge.vertex_crease_weight = mesh->vertexCreaseMap->vertexCreaseMap.lookup(halfEdgesGeom[i].vtx_index,0.0f);
/* pin corner vertices when requested by user */
if (subdiv_mode == RTC_SUBDIVISION_MODE_PIN_CORNERS && edge.isCorner())
edge.vertex_crease_weight = float(inf);
/* pin all border vertices when requested by user */
else if (subdiv_mode == RTC_SUBDIVISION_MODE_PIN_BOUNDARY && edge.vertexHasBorder())
edge.vertex_crease_weight = float(inf);
/* pin every vertex when requested by user */
else if (subdiv_mode == RTC_SUBDIVISION_MODE_PIN_ALL) {
edge.edge_crease_weight = float(inf);
edge.vertex_crease_weight = float(inf);
}
}
/* update patch type */
if (updateEdgeCreases || updateVertexCreases) {
edge.patch_type = edge.patchType();
}
}
});
}
void SubdivMesh::Topology::initializeHalfEdgeStructures ()
{
/* if vertex indices not set we ignore this topology */
if (!vertexIndices)
return;
/* allocate half edge array */
halfEdges.resize(mesh->numEdges());
/* check if we have to recalculate the half edges */
bool recalculate = false;
recalculate |= vertexIndices.isLocalModified();
recalculate |= mesh->faceVertices.isLocalModified();
recalculate |= mesh->holes.isLocalModified();
/* check if we can simply update the half edges */
bool update = false;
update |= mesh->topology[0].vertexIndices.isLocalModified(); // we use this buffer to copy creases to interpolation topologies
update |= mesh->edge_creases.isLocalModified();
update |= mesh->edge_crease_weights.isLocalModified();
update |= mesh->vertex_creases.isLocalModified();
update |= mesh->vertex_crease_weights.isLocalModified();
update |= mesh->levels.isLocalModified();
/* now either recalculate or update the half edges */
if (recalculate) calculateHalfEdges();
else if (update) updateHalfEdges();
/* cleanup some state for static scenes */
/* if (mesh->scene_ == nullptr || mesh->scene_->isStaticAccel())
{
halfEdges0.clear();
halfEdges1.clear();
} */
/* clear modified state of all buffers */
vertexIndices.clearLocalModified();
}
void SubdivMesh::printStatistics()
{
size_t numBilinearFaces = 0;
size_t numRegularQuadFaces = 0;
size_t numIrregularQuadFaces = 0;
size_t numComplexFaces = 0;
for (size_t e=0, f=0; f<numFaces(); e+=faceVertices[f++])
{
switch (topology[0].halfEdges[e].patch_type) {
case HalfEdge::BILINEAR_PATCH : numBilinearFaces++; break;
case HalfEdge::REGULAR_QUAD_PATCH : numRegularQuadFaces++; break;
case HalfEdge::IRREGULAR_QUAD_PATCH: numIrregularQuadFaces++; break;
case HalfEdge::COMPLEX_PATCH : numComplexFaces++; break;
}
}
std::cout << "numFaces = " << numFaces() << ", "
<< "numBilinearFaces = " << numBilinearFaces << " (" << 100.0f * numBilinearFaces / numFaces() << "%), "
<< "numRegularQuadFaces = " << numRegularQuadFaces << " (" << 100.0f * numRegularQuadFaces / numFaces() << "%), "
<< "numIrregularQuadFaces " << numIrregularQuadFaces << " (" << 100.0f * numIrregularQuadFaces / numFaces() << "%) "
<< "numComplexFaces " << numComplexFaces << " (" << 100.0f * numComplexFaces / numFaces() << "%) "
<< std::endl;
}
void SubdivMesh::initializeHalfEdgeStructures ()
{
double t0 = getSeconds();
invalid_face.resize(numFaces()*numTimeSteps);
/* calculate start edge of each face */
faceStartEdge.resize(numFaces());
if (faceVertices.isLocalModified())
{
numHalfEdges = parallel_prefix_sum(faceVertices,faceStartEdge,numFaces(),0,std::plus<unsigned>());
/* calculate face of each half edge */
halfEdgeFace.resize(numHalfEdges);
for (size_t f=0, h=0; f<numFaces(); f++)
for (size_t e=0; e<faceVertices[f]; e++)
halfEdgeFace[h++] = (unsigned int) f;
}
/* create set with all vertex creases */
if (vertex_creases.isLocalModified() || vertex_crease_weights.isLocalModified())
vertexCreaseMap->vertexCreaseMap.init(vertex_creases,vertex_crease_weights);
/* create map with all edge creases */
if (edge_creases.isLocalModified() || edge_crease_weights.isLocalModified())
edgeCreaseMap->edgeCreaseMap.init(edge_creases,edge_crease_weights);
/* create set with all holes */
if (holes.isLocalModified())
holeSet->holeSet.init(holes);
/* create topology */
for (auto& t: topology)
t.initializeHalfEdgeStructures();
/* create interpolation cache mapping for interpolatable meshes */
for (size_t i=0; i<vertex_buffer_tags.size(); i++)
vertex_buffer_tags[i].resize(numFaces()*numInterpolationSlots4(vertices[i].getStride()));
for (size_t i=0; i<vertexAttribs.size(); i++)
if (vertexAttribs[i]) vertex_attrib_buffer_tags[i].resize(numFaces()*numInterpolationSlots4(vertexAttribs[i].getStride()));
/* cleanup some state for static scenes */
/* if (scene_ == nullptr || scene_->isStaticAccel())
{
vertexCreaseMap->vertexCreaseMap.clear();
edgeCreaseMap->edgeCreaseMap.clear();
} */
/* clear modified state of all buffers */
faceVertices.clearLocalModified();
holes.clearLocalModified();
for (auto& buffer : vertices) buffer.clearLocalModified();
levels.clearLocalModified();
edge_creases.clearLocalModified();
edge_crease_weights.clearLocalModified();
vertex_creases.clearLocalModified();
vertex_crease_weights.clearLocalModified();
double t1 = getSeconds();
/* print statistics in verbose mode */
if (device->verbosity(2)) {
std::cout << "half edge generation = " << 1000.0*(t1-t0) << "ms, " << 1E-6*double(numHalfEdges)/(t1-t0) << "M/s" << std::endl;
printStatistics();
}
}
bool SubdivMesh::verify ()
{
/*! verify consistent size of vertex arrays */
if (vertices.size() == 0) return false;
for (const auto& buffer : vertices)
if (buffer.size() != numVertices())
return false;
/*! verify vertex indices */
if (!topology[0].verify(numVertices()))
return false;
for (auto& b : vertexAttribs)
if (!topology[b.userData].verify(b.size()))
return false;
/*! verify vertices */
for (const auto& buffer : vertices)
for (size_t i=0; i<buffer.size(); i++)
if (!isvalid(buffer[i]))
return false;
return true;
}
void SubdivMesh::commit ()
{
initializeHalfEdgeStructures();
Geometry::commit();
}
unsigned int SubdivMesh::getFirstHalfEdge(unsigned int faceID)
{
if (faceID >= numFaces())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid face");
return faceStartEdge[faceID];
}
unsigned int SubdivMesh::getFace(unsigned int edgeID)
{
if (edgeID >= numHalfEdges)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid edge");
return halfEdgeFace[edgeID];
}
unsigned int SubdivMesh::getNextHalfEdge(unsigned int edgeID)
{
if (edgeID >= numHalfEdges)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid half edge");
return edgeID + topology[0].halfEdges[edgeID].next_half_edge_ofs;
}
unsigned int SubdivMesh::getPreviousHalfEdge(unsigned int edgeID)
{
if (edgeID >= numHalfEdges)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid half edge");
return edgeID + topology[0].halfEdges[edgeID].prev_half_edge_ofs;
}
unsigned int SubdivMesh::getOppositeHalfEdge(unsigned int topologyID, unsigned int edgeID)
{
if (topologyID >= topology.size())
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid topology");
if (edgeID >= numHalfEdges)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid half edge");
return edgeID + topology[topologyID].halfEdges[edgeID].opposite_half_edge_ofs;
}
#endif
namespace isa
{
SubdivMesh* createSubdivMesh(Device* device) {
return new SubdivMeshISA(device);
}
void SubdivMeshISA::interpolate(const RTCInterpolateArguments* const args)
{
unsigned int primID = args->primID;
float u = args->u;
float v = args->v;
RTCBufferType bufferType = args->bufferType;
unsigned int bufferSlot = args->bufferSlot;
float* P = args->P;
float* dPdu = args->dPdu;
float* dPdv = args->dPdv;
float* ddPdudu = args->ddPdudu;
float* ddPdvdv = args->ddPdvdv;
float* ddPdudv = args->ddPdudv;
unsigned int valueCount = args->valueCount;
/* calculate base pointer and stride */
assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < RTC_MAX_TIME_STEP_COUNT) ||
(bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot < RTC_MAX_USER_VERTEX_BUFFERS));
const char* src = nullptr;
size_t stride = 0;
std::vector<SharedLazyTessellationCache::CacheEntry>* baseEntry = nullptr;
Topology* topo = nullptr;
if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
assert(bufferSlot < vertexAttribs.size());
src = vertexAttribs[bufferSlot].getPtr();
stride = vertexAttribs[bufferSlot].getStride();
baseEntry = &vertex_attrib_buffer_tags[bufferSlot];
int topologyID = vertexAttribs[bufferSlot].userData;
topo = &topology[topologyID];
} else {
assert(bufferSlot < numTimeSteps);
src = vertices[bufferSlot].getPtr();
stride = vertices[bufferSlot].getStride();
baseEntry = &vertex_buffer_tags[bufferSlot];
topo = &topology[0];
}
bool has_P = P;
bool has_dP = dPdu; assert(!has_dP || dPdv);
bool has_ddP = ddPdudu; assert(!has_ddP || (ddPdvdv && ddPdudu));
for (unsigned int i=0; i<valueCount; i+=4)
{
vfloat4 Pt, dPdut, dPdvt, ddPdudut, ddPdvdvt, ddPdudvt;
isa::PatchEval<vfloat4,vfloat4>(baseEntry->at(interpolationSlot(primID,i/4,stride)),commitCounter,
topo->getHalfEdge(primID),src+i*sizeof(float),stride,u,v,
has_P ? &Pt : nullptr,
has_dP ? &dPdut : nullptr,
has_dP ? &dPdvt : nullptr,
has_ddP ? &ddPdudut : nullptr,
has_ddP ? &ddPdvdvt : nullptr,
has_ddP ? &ddPdudvt : nullptr);
if (has_P) {
for (size_t j=i; j<min(i+4,valueCount); j++)
P[j] = Pt[j-i];
}
if (has_dP)
{
for (size_t j=i; j<min(i+4,valueCount); j++) {
dPdu[j] = dPdut[j-i];
dPdv[j] = dPdvt[j-i];
}
}
if (has_ddP)
{
for (size_t j=i; j<min(i+4,valueCount); j++) {
ddPdudu[j] = ddPdudut[j-i];
ddPdvdv[j] = ddPdvdvt[j-i];
ddPdudv[j] = ddPdudvt[j-i];
}
}
}
}
void SubdivMeshISA::interpolateN(const RTCInterpolateNArguments* const args)
{
const void* valid_i = args->valid;
const unsigned* primIDs = args->primIDs;
const float* u = args->u;
const float* v = args->v;
unsigned int N = args->N;
RTCBufferType bufferType = args->bufferType;
unsigned int bufferSlot = args->bufferSlot;
float* P = args->P;
float* dPdu = args->dPdu;
float* dPdv = args->dPdv;
float* ddPdudu = args->ddPdudu;
float* ddPdvdv = args->ddPdvdv;
float* ddPdudv = args->ddPdudv;
unsigned int valueCount = args->valueCount;
/* calculate base pointer and stride */
assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < RTC_MAX_TIME_STEP_COUNT) ||
(bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot < RTC_MAX_USER_VERTEX_BUFFERS));
const char* src = nullptr;
size_t stride = 0;
std::vector<SharedLazyTessellationCache::CacheEntry>* baseEntry = nullptr;
Topology* topo = nullptr;
if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
assert(bufferSlot < vertexAttribs.size());
src = vertexAttribs[bufferSlot].getPtr();
stride = vertexAttribs[bufferSlot].getStride();
baseEntry = &vertex_attrib_buffer_tags[bufferSlot];
int topologyID = vertexAttribs[bufferSlot].userData;
topo = &topology[topologyID];
} else {
assert(bufferSlot < numTimeSteps);
src = vertices[bufferSlot].getPtr();
stride = vertices[bufferSlot].getStride();
baseEntry = &vertex_buffer_tags[bufferSlot];
topo = &topology[0];
}
const int* valid = (const int*) valid_i;
for (size_t i=0; i<N; i+=4)
{
vbool4 valid1 = vint4(int(i))+vint4(step) < vint4(int(N));
if (valid) valid1 &= vint4::loadu(&valid[i]) == vint4(-1);
if (none(valid1)) continue;
const vuint4 primID = vuint4::loadu(&primIDs[i]);
const vfloat4 uu = vfloat4::loadu(&u[i]);
const vfloat4 vv = vfloat4::loadu(&v[i]);
foreach_unique(valid1,primID,[&](const vbool4& valid1, const unsigned int primID)
{
for (unsigned int j=0; j<valueCount; j+=4)
{
const size_t M = min(4u,valueCount-j);
isa::PatchEvalSimd<vbool4,vint4,vfloat4,vfloat4>(baseEntry->at(interpolationSlot(primID,j/4,stride)),commitCounter,
topo->getHalfEdge(primID),src+j*sizeof(float),stride,valid1,uu,vv,
P ? P+j*N+i : nullptr,
dPdu ? dPdu+j*N+i : nullptr,
dPdv ? dPdv+j*N+i : nullptr,
ddPdudu ? ddPdudu+j*N+i : nullptr,
ddPdvdv ? ddPdvdv+j*N+i : nullptr,
ddPdudv ? ddPdudv+j*N+i : nullptr,
N,M);
}
});
}
}
}
}
|