File: instanced_geometry_device.cpp

package info (click to toggle)
embree 4.4.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 99,492 kB
  • sloc: cpp: 224,036; xml: 40,944; ansic: 2,731; python: 812; sh: 639; makefile: 228; csh: 42
file content (359 lines) | stat: -rw-r--r-- 13,397 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "instanced_geometry_device.h"

namespace embree {

/* all features required by this tutorial */
#define FEATURE_MASK \
  RTC_FEATURE_FLAG_TRIANGLE | \
  RTC_FEATURE_FLAG_INSTANCE | \
  RTC_FEATURE_FLAG_32_BIT_RAY_MASK

const int numPhi = 5;
const int numTheta = 2*numPhi;

RTCScene g_scene  = nullptr;
RTCGeometry g_instance0 = nullptr;
RTCGeometry g_instance1 = nullptr;
RTCGeometry g_instance2 = nullptr;
RTCGeometry g_instance3 = nullptr;
TutorialData data;

unsigned int createTriangulatedSphere (RTCScene scene, const Vec3fa& p, float r)
{
  /* create triangle mesh */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* map triangle and vertex buffers */
  Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),numTheta*(numPhi+1));
  Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2*numTheta*(numPhi-1));

  /* create sphere */
  int tri = 0;
  const float rcpNumTheta = rcp((float)numTheta);
  const float rcpNumPhi   = rcp((float)numPhi);
  for (int phi=0; phi<=numPhi; phi++)
  {
    for (int theta=0; theta<numTheta; theta++)
    {
      const float phif   = phi*float(pi)*rcpNumPhi;
      const float thetaf = theta*2.0f*float(pi)*rcpNumTheta;

      Vertex& v = vertices[phi*numTheta+theta];
      v.x = p.x + r*sin(phif)*sin(thetaf);
      v.y = p.y + r*cos(phif);
      v.z = p.z + r*sin(phif)*cos(thetaf);
    }
    if (phi == 0) continue;

    for (int theta=1; theta<=numTheta; theta++)
    {
      int p00 = (phi-1)*numTheta+theta-1;
      int p01 = (phi-1)*numTheta+theta%numTheta;
      int p10 = phi*numTheta+theta-1;
      int p11 = phi*numTheta+theta%numTheta;

      if (phi > 1) {
        triangles[tri].v0 = p10;
        triangles[tri].v1 = p01;
        triangles[tri].v2 = p00;
        tri++;
      }

      if (phi < numPhi) {
        triangles[tri].v0 = p11;
        triangles[tri].v1 = p01;
        triangles[tri].v2 = p10;
        tri++;
      }
    }
  }

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* creates a ground plane */
unsigned int createGroundPlane (RTCScene scene)
{
  /* create a triangulated plane with 2 triangles and 4 vertices */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* set vertices */
  Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),4);
  vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
  vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
  vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
  vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;

  /* set triangles */
  Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2);
  triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
  triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;

  rtcCommitGeometry(geom);
  unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
  TutorialData_Constructor(&data);
  
  /* create scene */
  data.g_scene = g_scene = rtcNewScene(g_device);
  rtcSetSceneBuildQuality(data.g_scene,RTC_BUILD_QUALITY_LOW);
  rtcSetSceneFlags(data.g_scene,RTC_SCENE_FLAG_DYNAMIC);

  /* create scene with 4 triangulated spheres */
  data.g_scene1 = rtcNewScene(g_device);
  createTriangulatedSphere(data.g_scene1,Vec3fa( 0, 0,+1),0.5f);
  createTriangulatedSphere(data.g_scene1,Vec3fa(+1, 0, 0),0.5f);
  createTriangulatedSphere(data.g_scene1,Vec3fa( 0, 0,-1),0.5f);
  createTriangulatedSphere(data.g_scene1,Vec3fa(-1, 0, 0),0.5f);
  rtcCommitScene (data.g_scene1);

  /* instantiate geometry */
  g_instance0 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  rtcSetGeometryMask(g_instance0, 0x80); // test high instance mask bits
  rtcSetGeometryInstancedScene(g_instance0,data.g_scene1);
  rtcSetGeometryTimeStepCount(g_instance0,1);
  g_instance1 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  rtcSetGeometryInstancedScene(g_instance1,data.g_scene1);
  rtcSetGeometryTimeStepCount(g_instance1,1);
  g_instance2 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  rtcSetGeometryInstancedScene(g_instance2,data.g_scene1);
  rtcSetGeometryTimeStepCount(g_instance2,1);
  g_instance3 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  rtcSetGeometryInstancedScene(g_instance3,data.g_scene1);
  rtcSetGeometryTimeStepCount(g_instance3,1);
  rtcAttachGeometry(data.g_scene,g_instance0);
  rtcAttachGeometry(data.g_scene,g_instance1);
  rtcAttachGeometry(data.g_scene,g_instance2);
  rtcAttachGeometry(data.g_scene,g_instance3);
  rtcReleaseGeometry(g_instance0);
  rtcReleaseGeometry(g_instance1);
  rtcReleaseGeometry(g_instance2);
  rtcReleaseGeometry(g_instance3);
  createGroundPlane(data.g_scene);

  /* set all colors */
  data.colors[4*0+0] = Vec3fa(0.25f, 0.f, 0.f);
  data.colors[4*0+1] = Vec3fa(0.50f, 0.f, 0.f);
  data.colors[4*0+2] = Vec3fa(0.75f, 0.f, 0.f);
  data.colors[4*0+3] = Vec3fa(1.00f, 0.f, 0.f);

  data.colors[4*1+0] = Vec3fa(0.f, 0.25f, 0.f);
  data.colors[4*1+1] = Vec3fa(0.f, 0.50f, 0.f);
  data.colors[4*1+2] = Vec3fa(0.f, 0.75f, 0.f);
  data.colors[4*1+3] = Vec3fa(0.f, 1.00f, 0.f);

  data.colors[4*2+0] = Vec3fa(0.f, 0.f, 0.25f);
  data.colors[4*2+1] = Vec3fa(0.f, 0.f, 0.50f);
  data.colors[4*2+2] = Vec3fa(0.f, 0.f, 0.75f);
  data.colors[4*2+3] = Vec3fa(0.f, 0.f, 1.00f);

  data.colors[4*3+0] = Vec3fa(0.25f, 0.25f, 0.f);
  data.colors[4*3+1] = Vec3fa(0.50f, 0.50f, 0.f);
  data.colors[4*3+2] = Vec3fa(0.75f, 0.75f, 0.f);
  data.colors[4*3+3] = Vec3fa(1.00f, 1.00f, 0.f);
}

/* task that renders a single screen tile */
Vec3fa renderPixel(const TutorialData& data, float x, float y, const ISPCCamera& camera, RayStats& stats)
{
  /* initialize ray */
  Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);

  /* intersect ray with scene */
  RTCIntersectArguments iargs;
  rtcInitIntersectArguments(&iargs);
  iargs.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
  
  rtcTraversableIntersect1(data.g_traversable,RTCRayHit_(ray),&iargs);
  RayStats_addRay(stats);

  /* shade pixels */
  Vec3fa color = Vec3fa(0.0f);
  if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
  {
    /* calculate shading normal in world space */
    Vec3fa Ns = ray.Ng;
    if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID)
    {
      AffineSpace3fa xfm;
      rtcGetGeometryTransformFromTraversable(data.g_traversable,ray.instID[0],0.0f,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,&xfm);
      Ns = xfmNormal(xfm,Ns);
      //Ns = xfmVector(data.normal_xfm[ray.instID[0]],Ns);
    }
    Ns = normalize(Ns);

    /* calculate diffuse color of geometries */
    Vec3fa diffuse = Vec3fa(1,1,1);
    if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID)
      diffuse = data.colors[4*ray.instID[0]+ray.geomID];
    color = color + diffuse*0.5;

    /* initialize shadow ray */
    Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));
    Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf);

    /* trace shadow ray */
    RTCOccludedArguments sargs;
    rtcInitOccludedArguments(&sargs);
    sargs.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
    
    rtcTraversableOccluded1(data.g_traversable,RTCRay_(shadow),&sargs);
    RayStats_addShadowRay(stats);

    /* add light contribution */
    if (shadow.tfar >= 0.0f)
      color = color + diffuse*clamp(-dot(lightDir,Ns),0.0f,1.0f);
  }
  return color;
}

void renderPixelStandard(const TutorialData& data,
                         int x, int y, 
                         int* pixels,
                         const unsigned int width,
                         const unsigned int height,
                         const float time,
                         const ISPCCamera& camera, RayStats& stats)
{
  /* calculate pixel color */
  Vec3fa color = renderPixel(data, (float)x,(float)y,camera, stats);
  
  /* write color to framebuffer */
  unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
  unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
  unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
  pixels[y*width+x] = (b << 16) + (g << 8) + r;
}

/* renders a single screen tile */
void renderTileStandard(int taskIndex,
                        int threadIndex,
                        int* pixels,
                        const unsigned int width,
                        const unsigned int height,
                        const float time,
                        const ISPCCamera& camera,
                        const int numTilesX,
                        const int numTilesY)
{
  const unsigned int tileY = taskIndex / numTilesX;
  const unsigned int tileX = taskIndex - tileY * numTilesX;
  const unsigned int x0 = tileX * TILE_SIZE_X;
  const unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const unsigned int y0 = tileY * TILE_SIZE_Y;
  const unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
  {
    renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
  }
}

/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
                                 const unsigned int width,
                                 const unsigned int height,
                                 const float time,
                                 const ISPCCamera& camera,
                                 const int numTilesX,
                                 const int numTilesY)
{
  renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}

extern "C" void renderFrameStandard (int* pixels,
                          const unsigned int width,
                          const unsigned int height,
                          const float time,
                          const ISPCCamera& camera)
{
  /* render all pixels */
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
  TutorialData ldata = data;
  sycl::event event = global_gpu_queue->submit([=](sycl::handler& cgh){
    const sycl::nd_range<2> nd_range = make_nd_range(height,width);
    cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item) {
      const unsigned int x = item.get_global_id(1); if (x >= width ) return;
      const unsigned int y = item.get_global_id(0); if (y >= height) return;
      RayStats stats;
      renderPixelStandard(ldata,x,y,pixels,width,height,time,camera,stats);
    });
  });
  global_gpu_queue->wait_and_throw();

  const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();
  const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();
  const double dt = (t1-t0)*1E-9;
  ((ISPCCamera*)&camera)->render_time = dt;
  
#else
  const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
    const int threadIndex = (int)TaskScheduler::threadIndex();
    for (size_t i=range.begin(); i<range.end(); i++)
      renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
  }); 
#endif
}

/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
                           const unsigned int width,
                           const unsigned int height,
                           const float time,
                           const ISPCCamera& camera)
{
  float t0 = 0.7f*time;
  float t1 = 1.5f*time;

  /* rotate instances around themselves */
  LinearSpace3fa xfm;
  xfm.vx = Vec3fa(cos(t1),0,sin(t1));
  xfm.vy = Vec3fa(0,1,0);
  xfm.vz = Vec3fa(-sin(t1),0,cos(t1));

  /* calculate transformations to move instances in circle */
  for (int i=0; i<4; i++) {
    float t = t0+i*2.0f*float(M_PI)/4.0f;
    data.instance_xfm[i] = AffineSpace3fa(xfm,2.2f*Vec3fa(+cos(t),0.0f,+sin(t)));
  }

  /* calculate transformations to properly transform normals */
  for (int i=0; i<4; i++)
    data.normal_xfm[i] = transposed(rcp(data.instance_xfm[i].l));

  /* set instance transformations */
  rtcSetGeometryTransform(g_instance0,0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&data.instance_xfm[0]);
  rtcSetGeometryTransform(g_instance1,0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&data.instance_xfm[1]);
  rtcSetGeometryTransform(g_instance2,0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&data.instance_xfm[2]);
  rtcSetGeometryTransform(g_instance3,0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&data.instance_xfm[3]);

  /* update scene */
  rtcCommitGeometry(g_instance0);
  rtcCommitGeometry(g_instance1);
  rtcCommitGeometry(g_instance2);
  rtcCommitGeometry(g_instance3);
  rtcCommitScene (data.g_scene);
  data.g_traversable = rtcGetSceneTraversable(data.g_scene);
}

/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
  TutorialData_Destructor(&data);
}

} // namespace embree