1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "instanced_geometry_device.h"
namespace embree {
/* all features required by this tutorial */
#define FEATURE_MASK \
RTC_FEATURE_FLAG_TRIANGLE | \
RTC_FEATURE_FLAG_INSTANCE | \
RTC_FEATURE_FLAG_32_BIT_RAY_MASK
const int numPhi = 5;
const int numTheta = 2*numPhi;
RTCScene g_scene = nullptr;
RTCGeometry g_instance0 = nullptr;
RTCGeometry g_instance1 = nullptr;
RTCGeometry g_instance2 = nullptr;
RTCGeometry g_instance3 = nullptr;
TutorialData data;
unsigned int createTriangulatedSphere (RTCScene scene, const Vec3fa& p, float r)
{
/* create triangle mesh */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* map triangle and vertex buffers */
Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),numTheta*(numPhi+1));
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2*numTheta*(numPhi-1));
/* create sphere */
int tri = 0;
const float rcpNumTheta = rcp((float)numTheta);
const float rcpNumPhi = rcp((float)numPhi);
for (int phi=0; phi<=numPhi; phi++)
{
for (int theta=0; theta<numTheta; theta++)
{
const float phif = phi*float(pi)*rcpNumPhi;
const float thetaf = theta*2.0f*float(pi)*rcpNumTheta;
Vertex& v = vertices[phi*numTheta+theta];
v.x = p.x + r*sin(phif)*sin(thetaf);
v.y = p.y + r*cos(phif);
v.z = p.z + r*sin(phif)*cos(thetaf);
}
if (phi == 0) continue;
for (int theta=1; theta<=numTheta; theta++)
{
int p00 = (phi-1)*numTheta+theta-1;
int p01 = (phi-1)*numTheta+theta%numTheta;
int p10 = phi*numTheta+theta-1;
int p11 = phi*numTheta+theta%numTheta;
if (phi > 1) {
triangles[tri].v0 = p10;
triangles[tri].v1 = p01;
triangles[tri].v2 = p00;
tri++;
}
if (phi < numPhi) {
triangles[tri].v0 = p11;
triangles[tri].v1 = p01;
triangles[tri].v2 = p10;
tri++;
}
}
}
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* creates a ground plane */
unsigned int createGroundPlane (RTCScene scene)
{
/* create a triangulated plane with 2 triangles and 4 vertices */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),4);
vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;
/* set triangles */
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2);
triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
TutorialData_Constructor(&data);
/* create scene */
data.g_scene = g_scene = rtcNewScene(g_device);
rtcSetSceneBuildQuality(data.g_scene,RTC_BUILD_QUALITY_LOW);
rtcSetSceneFlags(data.g_scene,RTC_SCENE_FLAG_DYNAMIC);
/* create scene with 4 triangulated spheres */
data.g_scene1 = rtcNewScene(g_device);
createTriangulatedSphere(data.g_scene1,Vec3fa( 0, 0,+1),0.5f);
createTriangulatedSphere(data.g_scene1,Vec3fa(+1, 0, 0),0.5f);
createTriangulatedSphere(data.g_scene1,Vec3fa( 0, 0,-1),0.5f);
createTriangulatedSphere(data.g_scene1,Vec3fa(-1, 0, 0),0.5f);
rtcCommitScene (data.g_scene1);
/* instantiate geometry */
g_instance0 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryMask(g_instance0, 0x80); // test high instance mask bits
rtcSetGeometryInstancedScene(g_instance0,data.g_scene1);
rtcSetGeometryTimeStepCount(g_instance0,1);
g_instance1 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(g_instance1,data.g_scene1);
rtcSetGeometryTimeStepCount(g_instance1,1);
g_instance2 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(g_instance2,data.g_scene1);
rtcSetGeometryTimeStepCount(g_instance2,1);
g_instance3 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(g_instance3,data.g_scene1);
rtcSetGeometryTimeStepCount(g_instance3,1);
rtcAttachGeometry(data.g_scene,g_instance0);
rtcAttachGeometry(data.g_scene,g_instance1);
rtcAttachGeometry(data.g_scene,g_instance2);
rtcAttachGeometry(data.g_scene,g_instance3);
rtcReleaseGeometry(g_instance0);
rtcReleaseGeometry(g_instance1);
rtcReleaseGeometry(g_instance2);
rtcReleaseGeometry(g_instance3);
createGroundPlane(data.g_scene);
/* set all colors */
data.colors[4*0+0] = Vec3fa(0.25f, 0.f, 0.f);
data.colors[4*0+1] = Vec3fa(0.50f, 0.f, 0.f);
data.colors[4*0+2] = Vec3fa(0.75f, 0.f, 0.f);
data.colors[4*0+3] = Vec3fa(1.00f, 0.f, 0.f);
data.colors[4*1+0] = Vec3fa(0.f, 0.25f, 0.f);
data.colors[4*1+1] = Vec3fa(0.f, 0.50f, 0.f);
data.colors[4*1+2] = Vec3fa(0.f, 0.75f, 0.f);
data.colors[4*1+3] = Vec3fa(0.f, 1.00f, 0.f);
data.colors[4*2+0] = Vec3fa(0.f, 0.f, 0.25f);
data.colors[4*2+1] = Vec3fa(0.f, 0.f, 0.50f);
data.colors[4*2+2] = Vec3fa(0.f, 0.f, 0.75f);
data.colors[4*2+3] = Vec3fa(0.f, 0.f, 1.00f);
data.colors[4*3+0] = Vec3fa(0.25f, 0.25f, 0.f);
data.colors[4*3+1] = Vec3fa(0.50f, 0.50f, 0.f);
data.colors[4*3+2] = Vec3fa(0.75f, 0.75f, 0.f);
data.colors[4*3+3] = Vec3fa(1.00f, 1.00f, 0.f);
}
/* task that renders a single screen tile */
Vec3fa renderPixel(const TutorialData& data, float x, float y, const ISPCCamera& camera, RayStats& stats)
{
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p), Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);
/* intersect ray with scene */
RTCIntersectArguments iargs;
rtcInitIntersectArguments(&iargs);
iargs.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
rtcTraversableIntersect1(data.g_traversable,RTCRayHit_(ray),&iargs);
RayStats_addRay(stats);
/* shade pixels */
Vec3fa color = Vec3fa(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
/* calculate shading normal in world space */
Vec3fa Ns = ray.Ng;
if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID)
{
AffineSpace3fa xfm;
rtcGetGeometryTransformFromTraversable(data.g_traversable,ray.instID[0],0.0f,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,&xfm);
Ns = xfmNormal(xfm,Ns);
//Ns = xfmVector(data.normal_xfm[ray.instID[0]],Ns);
}
Ns = normalize(Ns);
/* calculate diffuse color of geometries */
Vec3fa diffuse = Vec3fa(1,1,1);
if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID)
diffuse = data.colors[4*ray.instID[0]+ray.geomID];
color = color + diffuse*0.5;
/* initialize shadow ray */
Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));
Ray shadow(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf);
/* trace shadow ray */
RTCOccludedArguments sargs;
rtcInitOccludedArguments(&sargs);
sargs.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
rtcTraversableOccluded1(data.g_traversable,RTCRay_(shadow),&sargs);
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f)
color = color + diffuse*clamp(-dot(lightDir,Ns),0.0f,1.0f);
}
return color;
}
void renderPixelStandard(const TutorialData& data,
int x, int y,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera, RayStats& stats)
{
/* calculate pixel color */
Vec3fa color = renderPixel(data, (float)x,(float)y,camera, stats);
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
/* renders a single screen tile */
void renderTileStandard(int taskIndex,
int threadIndex,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0+TILE_SIZE_X,width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0+TILE_SIZE_Y,height);
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
}
}
/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
extern "C" void renderFrameStandard (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
/* render all pixels */
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
TutorialData ldata = data;
sycl::event event = global_gpu_queue->submit([=](sycl::handler& cgh){
const sycl::nd_range<2> nd_range = make_nd_range(height,width);
cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item) {
const unsigned int x = item.get_global_id(1); if (x >= width ) return;
const unsigned int y = item.get_global_id(0); if (y >= height) return;
RayStats stats;
renderPixelStandard(ldata,x,y,pixels,width,height,time,camera,stats);
});
});
global_gpu_queue->wait_and_throw();
const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();
const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();
const double dt = (t1-t0)*1E-9;
((ISPCCamera*)&camera)->render_time = dt;
#else
const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
});
#endif
}
/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
float t0 = 0.7f*time;
float t1 = 1.5f*time;
/* rotate instances around themselves */
LinearSpace3fa xfm;
xfm.vx = Vec3fa(cos(t1),0,sin(t1));
xfm.vy = Vec3fa(0,1,0);
xfm.vz = Vec3fa(-sin(t1),0,cos(t1));
/* calculate transformations to move instances in circle */
for (int i=0; i<4; i++) {
float t = t0+i*2.0f*float(M_PI)/4.0f;
data.instance_xfm[i] = AffineSpace3fa(xfm,2.2f*Vec3fa(+cos(t),0.0f,+sin(t)));
}
/* calculate transformations to properly transform normals */
for (int i=0; i<4; i++)
data.normal_xfm[i] = transposed(rcp(data.instance_xfm[i].l));
/* set instance transformations */
rtcSetGeometryTransform(g_instance0,0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&data.instance_xfm[0]);
rtcSetGeometryTransform(g_instance1,0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&data.instance_xfm[1]);
rtcSetGeometryTransform(g_instance2,0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&data.instance_xfm[2]);
rtcSetGeometryTransform(g_instance3,0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&data.instance_xfm[3]);
/* update scene */
rtcCommitGeometry(g_instance0);
rtcCommitGeometry(g_instance1);
rtcCommitGeometry(g_instance2);
rtcCommitGeometry(g_instance3);
rtcCommitScene (data.g_scene);
data.g_traversable = rtcGetSceneTraversable(data.g_scene);
}
/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
TutorialData_Destructor(&data);
}
} // namespace embree
|