File: instanced_geometry_device.ispc

package info (click to toggle)
embree 4.4.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 99,492 kB
  • sloc: cpp: 224,036; xml: 40,944; ansic: 2,731; python: 812; sh: 639; makefile: 228; csh: 42
file content (351 lines) | stat: -rw-r--r-- 14,090 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "instanced_geometry_device.isph"

/* all features required by this tutorial */
#define FEATURE_MASK \
  RTC_FEATURE_FLAG_TRIANGLE | \
  RTC_FEATURE_FLAG_INSTANCE | \
  RTC_FEATURE_FLAG_32_BIT_RAY_MASK

const uniform int numPhi = 5;
const uniform int numTheta = 2*numPhi;

RTCScene g_scene  = NULL;
RTCGeometry g_instance0 = NULL;
RTCGeometry g_instance1 = NULL;
RTCGeometry g_instance2 = NULL;
RTCGeometry g_instance3 = NULL;
uniform TutorialData data;

uniform unsigned int createTriangulatedSphere (RTCScene scene, const uniform Vec3f& p, uniform float r)
{
  /* create triangle mesh */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* map triangle and vertex buffers */
  uniform Vertex* uniform vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(uniform Vertex),numTheta*(numPhi+1));
  uniform Triangle* uniform triangles = (uniform Triangle* uniform) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(uniform Triangle),2*numTheta*(numPhi-1));

  /* create sphere */
  uniform int tri = 0;
  const uniform float rcpNumTheta = rcp((uniform float)numTheta);
  const uniform float rcpNumPhi   = rcp((uniform float)numPhi);
  for (uniform int phi=0; phi<=numPhi; phi++)
  {
    for (uniform int theta=0; theta<numTheta; theta++)
    {
      const uniform float phif   = phi*pi*rcpNumPhi;
      const uniform float thetaf = theta*2.0f*pi*rcpNumTheta;

      uniform Vertex& v = vertices[phi*numTheta+theta];
      v.x = p.x + r*sin(phif)*sin(thetaf);
      v.y = p.y + r*cos(phif);
      v.z = p.z + r*sin(phif)*cos(thetaf);
    }
    if (phi == 0) continue;

    for (uniform int theta=1; theta<=numTheta; theta++)
    {
      uniform int p00 = (phi-1)*numTheta+theta-1;
      uniform int p01 = (phi-1)*numTheta+theta%numTheta;
      uniform int p10 = phi*numTheta+theta-1;
      uniform int p11 = phi*numTheta+theta%numTheta;

      if (phi > 1) {
        triangles[tri].v0 = p10;
        triangles[tri].v1 = p01;
        triangles[tri].v2 = p00;
        tri++;
      }

      if (phi < numPhi) {
        triangles[tri].v0 = p11;
        triangles[tri].v1 = p01;
        triangles[tri].v2 = p10;
        tri++;
      }
    }
  }

  rtcCommitGeometry(geom);
  uniform unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* creates a ground plane */
uniform unsigned int createGroundPlane (RTCScene scene)
{
  /* create a triangulated plane with 2 triangles and 4 vertices */
  RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);

  /* set vertices */
  uniform Vertex* uniform vertices = (uniform Vertex* uniform) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(uniform Vertex),4);
  vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
  vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
  vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
  vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;

  /* set triangles */
  uniform Triangle* uniform triangles = (uniform Triangle* uniform) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(uniform Triangle),2);
  triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;
  triangles[1].v0 = 1; triangles[1].v1 = 3; triangles[1].v2 = 2;

  rtcCommitGeometry(geom);
  uniform unsigned int geomID = rtcAttachGeometry(scene,geom);
  rtcReleaseGeometry(geom);
  return geomID;
}

/* called by the C++ code for initialization */
export void device_init (uniform int8* uniform cfg)
{
  TutorialData_Constructor(&data);
  
  /* create scene */
  data.g_scene = g_scene = rtcNewScene(g_device);
  rtcSetSceneBuildQuality(data.g_scene,RTC_BUILD_QUALITY_LOW);
  rtcSetSceneFlags(data.g_scene,RTC_SCENE_FLAG_DYNAMIC);

  /* create scene with 4 triangulated spheres */
  data.g_scene1 = rtcNewScene(g_device);
  createTriangulatedSphere(data.g_scene1,make_Vec3f( 0, 0,+1),0.5f);
  createTriangulatedSphere(data.g_scene1,make_Vec3f(+1, 0, 0),0.5f);
  createTriangulatedSphere(data.g_scene1,make_Vec3f( 0, 0,-1),0.5f);
  createTriangulatedSphere(data.g_scene1,make_Vec3f(-1, 0, 0),0.5f);
  rtcCommitScene (data.g_scene1);

  /* instantiate geometry */
  g_instance0 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  rtcSetGeometryMask(g_instance0, 0x80); // test high instance mask bits
  rtcSetGeometryInstancedScene(g_instance0,data.g_scene1);
  rtcSetGeometryTimeStepCount(g_instance0,1);
  g_instance1 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  rtcSetGeometryInstancedScene(g_instance1,data.g_scene1);
  rtcSetGeometryTimeStepCount(g_instance1,1);
  g_instance2 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  rtcSetGeometryInstancedScene(g_instance2,data.g_scene1);
  rtcSetGeometryTimeStepCount(g_instance2,1);
  g_instance3 = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
  rtcSetGeometryInstancedScene(g_instance3,data.g_scene1);
  rtcSetGeometryTimeStepCount(g_instance3,1);
  rtcAttachGeometry(data.g_scene,g_instance0);
  rtcAttachGeometry(data.g_scene,g_instance1);
  rtcAttachGeometry(data.g_scene,g_instance2);
  rtcAttachGeometry(data.g_scene,g_instance3);
  rtcReleaseGeometry(g_instance0);
  rtcReleaseGeometry(g_instance1);
  rtcReleaseGeometry(g_instance2);
  rtcReleaseGeometry(g_instance3);
  createGroundPlane(data.g_scene);

  /* set all colors */
  data.colors[4*0+0] = make_Vec3f(0.25f, 0.f, 0.f);
  data.colors[4*0+1] = make_Vec3f(0.50f, 0.f, 0.f);
  data.colors[4*0+2] = make_Vec3f(0.75f, 0.f, 0.f);
  data.colors[4*0+3] = make_Vec3f(1.00f, 0.f, 0.f);

  data.colors[4*1+0] = make_Vec3f(0.f, 0.25f, 0.f);
  data.colors[4*1+1] = make_Vec3f(0.f, 0.50f, 0.f);
  data.colors[4*1+2] = make_Vec3f(0.f, 0.75f, 0.f);
  data.colors[4*1+3] = make_Vec3f(0.f, 1.00f, 0.f);

  data.colors[4*2+0] = make_Vec3f(0.f, 0.f, 0.25f);
  data.colors[4*2+1] = make_Vec3f(0.f, 0.f, 0.50f);
  data.colors[4*2+2] = make_Vec3f(0.f, 0.f, 0.75f);
  data.colors[4*2+3] = make_Vec3f(0.f, 0.f, 1.00f);

  data.colors[4*3+0] = make_Vec3f(0.25f, 0.25f, 0.f);
  data.colors[4*3+1] = make_Vec3f(0.50f, 0.50f, 0.f);
  data.colors[4*3+2] = make_Vec3f(0.75f, 0.75f, 0.f);
  data.colors[4*3+3] = make_Vec3f(1.00f, 1.00f, 0.f);
}

/* task that renders a single screen tile */
Vec3f renderPixel(const uniform TutorialData& data, float x, float y, const uniform ISPCCamera& camera, uniform RayStats& stats)
{
  /* initialize ray */
  Ray ray = make_Ray(make_Vec3f(camera.xfm.p), make_Vec3f(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)), 0.0f, inf);

  /* intersect ray with scene */
  uniform RTCIntersectArguments iargs;
  rtcInitIntersectArguments(&iargs);
  iargs.feature_mask = (uniform RTCFeatureFlags) (FEATURE_MASK);
  
  rtcTraversableIntersectV(data.g_traversable,RTCRayHit_(ray),&iargs);
  RayStats_addRay(stats);

  /* shade pixels */
  Vec3f color = make_Vec3f(0.0f);
  if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
  {
    /* calculate shading normal in world space */
    Vec3f Ns = ray.Ng;
    if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID)
    {
      AffineSpace3f xfm;
      rtcGetGeometryTransformFromTraversable(data.g_traversable,ray.instID[0],0.0f,RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,&xfm);
      Ns = xfmNormal(xfm,Ns);
      //Ns = xfmVector(data.normal_xfm[ray.instID[0]],Ns);
    }
    Ns = normalize(Ns);

    /* calculate diffuse color of geometries */
    Vec3f diffuse = make_Vec3f(1,1,1);
    if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID)
      diffuse = data.colors[4*ray.instID[0]+ray.geomID];
    color = color + diffuse*0.5;

    /* initialize shadow ray */
    Vec3f lightDir = normalize(make_Vec3f(-1,-1,-1));
    Ray shadow = make_Ray(ray.org + ray.tfar*ray.dir, neg(lightDir), 0.001f, inf);

    /* trace shadow ray */
    uniform RTCOccludedArguments sargs;
    rtcInitOccludedArguments(&sargs);
    sargs.feature_mask = (uniform RTCFeatureFlags) (FEATURE_MASK);
    
    rtcTraversableOccludedV(data.g_traversable,RTCRay_(shadow),&sargs);
    RayStats_addShadowRay(stats);

    /* add light contribution */
    if (shadow.tfar >= 0.0f)
      color = color + diffuse*clamp(-dot(lightDir,Ns),0.0f,1.0f);
  }
  return color;
}

void renderPixelStandard(const uniform TutorialData& data,
                         int x, int y, 
                         uniform int* uniform pixels,
                         const uniform unsigned int width,
                         const uniform unsigned int height,
                         const uniform float time,
                         const uniform ISPCCamera& camera, uniform RayStats& stats)
{
  /* calculate pixel color */
  Vec3f color = renderPixel(data, (float)x,(float)y,camera, stats);
  
  /* write color to framebuffer */
  unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
  unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
  unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
  pixels[y*width+x] = (b << 16) + (g << 8) + r;
}

/* renders a single screen tile */
void renderTileStandard(uniform int taskIndex,
                        uniform int threadIndex,
                        uniform int* uniform pixels,
                        const uniform unsigned int width,
                        const uniform unsigned int height,
                        const uniform float time,
                        const uniform ISPCCamera& camera,
                        const uniform int numTilesX,
                        const uniform int numTilesY)
{
  const uniform unsigned int tileY = taskIndex / numTilesX;
  const uniform unsigned int tileX = taskIndex - tileY * numTilesX;
  const uniform unsigned int x0 = tileX * TILE_SIZE_X;
  const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width);
  const uniform unsigned int y0 = tileY * TILE_SIZE_Y;
  const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height);

  foreach_tiled (y = y0 ... y1, x = x0 ... x1)
  {
    renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
  }
}

/* task that renders a single screen tile */
task void renderTileTask(uniform int* uniform pixels,
                                 const uniform unsigned int width,
                                 const uniform unsigned int height,
                                 const uniform float time,
                                 const uniform ISPCCamera& camera,
                                 const uniform int numTilesX,
                                 const uniform int numTilesY)
{
  renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}

export void renderFrameStandard (uniform int* uniform pixels,
                          const uniform unsigned int width,
                          const uniform unsigned int height,
                          const uniform float time,
                          const uniform ISPCCamera& camera)
{
  /* render all pixels */
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
  TutorialData ldata = data;
  sycl::event event = global_gpu_queue->submit([=](sycl::handler& cgh){
    const sycl::nd_range<2> nd_range = make_nd_range(height,width);
    cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item) {
      const unsigned int x = item.get_global_id(1); if (x >= width ) return;
      const unsigned int y = item.get_global_id(0); if (y >= height) return;
      RayStats stats;
      renderPixelStandard(ldata,x,y,pixels,width,height,time,camera,stats);
    });
  });
  global_gpu_queue->wait_and_throw();

  const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();
  const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();
  const double dt = (t1-t0)*1E-9;
  ((ISPCCamera*)&camera)->render_time = dt;
  
#else
  const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
  const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
  launch[numTilesX*numTilesY] renderTileTask(pixels,width,height,time,camera,numTilesX,numTilesY); sync;
#endif
}

/* called by the C++ code to render */
export void device_render (uniform int* uniform pixels,
                           const uniform unsigned int width,
                           const uniform unsigned int height,
                           const uniform float time,
                           const uniform ISPCCamera& camera)
{
  uniform float t0 = 0.7f*time;
  uniform float t1 = 1.5f*time;

  /* rotate instances around themselves */
  uniform LinearSpace3f xfm;
  xfm.vx = make_Vec3f(cos(t1),0,sin(t1));
  xfm.vy = make_Vec3f(0,1,0);
  xfm.vz = make_Vec3f(-sin(t1),0,cos(t1));

  /* calculate transformations to move instances in circle */
  for (uniform int i=0; i<4; i++) {
    uniform float t = t0+i*2.0f*M_PI/4.0f;
    data.instance_xfm[i] = make_AffineSpace3f(xfm,2.2f*make_Vec3f(+cos(t),0.0f,+sin(t)));
  }

  /* calculate transformations to properly transform normals */
  for (uniform int i=0; i<4; i++)
    data.normal_xfm[i] = transposed(rcp(data.instance_xfm[i].l));

  /* set instance transformations */
  rtcSetGeometryTransform(g_instance0,0,RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,(uniform float* uniform)&data.instance_xfm[0]);
  rtcSetGeometryTransform(g_instance1,0,RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,(uniform float* uniform)&data.instance_xfm[1]);
  rtcSetGeometryTransform(g_instance2,0,RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,(uniform float* uniform)&data.instance_xfm[2]);
  rtcSetGeometryTransform(g_instance3,0,RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,(uniform float* uniform)&data.instance_xfm[3]);

  /* update scene */
  rtcCommitGeometry(g_instance0);
  rtcCommitGeometry(g_instance1);
  rtcCommitGeometry(g_instance2);
  rtcCommitGeometry(g_instance3);
  rtcCommitScene (data.g_scene);
  data.g_traversable = rtcGetSceneTraversable(data.g_scene);
}

/* called by the C++ code for cleanup */
export void device_cleanup ()
{
  TutorialData_Destructor(&data);
}