1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "user_geometry_device.h"
namespace embree {
#if EMBREE_SYCL_TUTORIAL
#define USE_ARGUMENT_CALLBACKS 1
#else
#define USE_ARGUMENT_CALLBACKS 0
#endif
/* all features required by this tutorial */
#if USE_ARGUMENT_CALLBACKS
#define FEATURE_MASK \
RTC_FEATURE_FLAG_TRIANGLE | \
RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_ARGUMENTS | \
RTC_FEATURE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS
#else
#define FEATURE_MASK \
RTC_FEATURE_FLAG_TRIANGLE | \
RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_GEOMETRY | \
RTC_FEATURE_FLAG_FILTER_FUNCTION_IN_GEOMETRY
#endif
#define ENABLE_NATIVE_INSTANCING 0
RTCScene g_scene = nullptr;
TutorialData data;
const int numPhi = 5;
const int numTheta = 2*numPhi;
RTC_SYCL_INDIRECTLY_CALLABLE void contextFilterFunction(const RTCFilterFunctionNArguments* args);
RTCIntersectFunctionN instanceIntersectFuncPtr = nullptr;
RTCOccludedFunctionN instanceOccludedFuncPtr = nullptr;
RTCIntersectFunctionN sphereIntersectFuncPtr = nullptr;
RTCOccludedFunctionN sphereOccludedFuncPtr = nullptr;
RTCFilterFunctionN sphereFilterFuncPtr = nullptr;
inline void pushInstanceId(RTCRayQueryContext* ctx, unsigned int id)
{
#if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
ctx->instID[ctx->instStackSize++] = id;
#else
ctx->instID[0] = id;
#endif
}
inline void popInstanceId(RTCRayQueryContext* ctx)
{
#if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
ctx->instID[--ctx->instStackSize] = RTC_INVALID_GEOMETRY_ID;
#else
ctx->instID[0] = RTC_INVALID_GEOMETRY_ID;
#endif
}
inline void copyInstanceIdStack(const RTCRayQueryContext* ctx, unsigned* tgt)
{
tgt[0] = ctx->instID[0];
#if (RTC_MAX_INSTANCE_LEVEL_COUNT > 1)
for (unsigned l = 1; l < RTC_MAX_INSTANCE_LEVEL_COUNT && l < ctx->instStackSize; ++l)
tgt[l] = ctx->instID[l];
#endif
}
// ======================================================================== //
// User defined instancing //
// ======================================================================== //
void instanceBoundsFunc(const struct RTCBoundsFunctionArguments* args)
{
const Instance* instance = (const Instance*) args->geometryUserPtr;
RTCBounds* bounds_o = args->bounds_o;
Vec3fa l = instance->lower;
Vec3fa u = instance->upper;
Vec3fa p000 = xfmPoint(instance->local2world,Vec3fa(l.x,l.y,l.z));
Vec3fa p001 = xfmPoint(instance->local2world,Vec3fa(l.x,l.y,u.z));
Vec3fa p010 = xfmPoint(instance->local2world,Vec3fa(l.x,u.y,l.z));
Vec3fa p011 = xfmPoint(instance->local2world,Vec3fa(l.x,u.y,u.z));
Vec3fa p100 = xfmPoint(instance->local2world,Vec3fa(u.x,l.y,l.z));
Vec3fa p101 = xfmPoint(instance->local2world,Vec3fa(u.x,l.y,u.z));
Vec3fa p110 = xfmPoint(instance->local2world,Vec3fa(u.x,u.y,l.z));
Vec3fa p111 = xfmPoint(instance->local2world,Vec3fa(u.x,u.y,u.z));
Vec3fa lower = min(min(min(p000,p001),min(p010,p011)),min(min(p100,p101),min(p110,p111)));
Vec3fa upper = max(max(max(p000,p001),max(p010,p011)),max(max(p100,p101),max(p110,p111)));
bounds_o->lower_x = lower.x;
bounds_o->lower_y = lower.y;
bounds_o->lower_z = lower.z;
bounds_o->upper_x = upper.x;
bounds_o->upper_y = upper.y;
bounds_o->upper_z = upper.z;
}
RTC_SYCL_INDIRECTLY_CALLABLE void instanceIntersectFunc(const RTCIntersectFunctionNArguments* args)
{
const int* valid = args->valid;
void* ptr = args->geometryUserPtr;
RTCRayHitN* rays = (RTCRayHitN*)args->rayhit;
assert(args->N == 1);
if (!valid[0])
return;
Ray *ray = (Ray*)rays;
const Instance* instance = (const Instance*)ptr;
const Vec3ff ray_org = ray->org;
const Vec3ff ray_dir = ray->dir;
const float ray_tnear = ray->tnear();
const float ray_tfar = ray->tfar;
#if 0
RTCRayQueryContext* context = args->context;
ray->org = Vec3ff(xfmPoint (instance->world2local,ray_org));
ray->dir = Vec3ff(xfmVector(instance->world2local,ray_dir));
ray->tnear() = ray_tnear;
ray->tfar = ray_tfar;
pushInstanceId(context, args->geomID);
RTCIntersectArguments args;
rtcInitIntersectArguments(&args);
args.context = context;
rtcTraversableIntersect1(instance->object,RTCRayHit_(*ray),&args);
popInstanceId(context);
const float updated_tfar = ray->tfar;
ray->org = ray_org;
ray->dir = ray_dir;
ray->tfar = updated_tfar;
#else
RTCRay xray;
const Vec3fa org = xfmPoint (instance->world2local,ray_org);
const Vec3fa dir = xfmVector(instance->world2local,ray_dir);
xray.org_x = org.x; xray.org_y = org.y; xray.org_z = org.z;
xray.dir_x = dir.x; xray.dir_y = dir.y; xray.dir_z = dir.z;
xray.tnear = ray_tnear;
xray.tfar = ray_tfar;
xray.time = 0.0f;
xray.mask = -1;
xray.id = 0;
xray.flags = 0;
rtcTraversableForwardIntersect1(args,instance->object,&xray,args->geomID);
#endif
}
RTC_SYCL_INDIRECTLY_CALLABLE void instanceOccludedFunc(const RTCOccludedFunctionNArguments* args)
{
const int* valid = args->valid;
void* ptr = args->geometryUserPtr;
RTCRayHitN* rays = (RTCRayHitN*)args->ray;
assert(args->N == 1);
if (!valid[0])
return;
Ray *ray = (Ray*)rays;
const Instance* instance = (const Instance*)ptr;
const Vec3ff ray_org = ray->org;
const Vec3ff ray_dir = ray->dir;
const float ray_tnear = ray->tnear();
const float ray_tfar = ray->tfar;
#if 0
RTCRayQueryContext* context = args->context;
ray->org = Vec3ff(xfmPoint (instance->world2local,ray_org));
ray->dir = Vec3ff(xfmVector(instance->world2local,ray_dir));
ray->tnear() = ray_tnear;
ray->tfar = ray_tfar;
pushInstanceId(context, args->geomID);
RTCOccludedArguments args;
rtcInitOccludedArguments(&args);
args.context = context;
rtcTraversableOccluded1(instance->object,RTCRay_(*ray),&args);
popInstanceId(context);
const float updated_tfar = ray->tfar;
ray->org = ray_org;
ray->dir = ray_dir;
ray->tnear() = ray_tnear;
ray->tfar = updated_tfar;
#else
RTCRay xray;
const Vec3fa org = xfmPoint (instance->world2local,ray_org);
const Vec3fa dir = xfmVector(instance->world2local,ray_dir);
xray.org_x = org.x; xray.org_y = org.y; xray.org_z = org.z;
xray.dir_x = dir.x; xray.dir_y = dir.y; xray.dir_z = dir.z;
xray.tnear = ray_tnear;
xray.tfar = ray_tfar;
xray.time = 0.0f;
xray.mask = -1;
xray.id = 0;
xray.flags = 0;
rtcTraversableForwardOccluded1(args,instance->object,&xray,args->geomID);
#endif
}
Instance* createInstance (RTCScene scene, RTCScene object, int geomID, const Vec3fa& lower, const Vec3fa& upper)
{
#if !ENABLE_NATIVE_INSTANCING
Instance* instance = (Instance*) alignedUSMMalloc(sizeof(Instance),16);
instance->type = USER_GEOMETRY_INSTANCE;
instance->object = rtcGetSceneTraversable(object);
instance->lower = lower;
instance->upper = upper;
instance->local2world.l.vx = Vec3fa(1,0,0);
instance->local2world.l.vy = Vec3fa(0,1,0);
instance->local2world.l.vz = Vec3fa(0,0,1);
instance->local2world.p = Vec3fa(0,0,0);
instance->geometry = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
rtcSetGeometryUserPrimitiveCount(instance->geometry,1);
rtcSetGeometryUserData(instance->geometry,instance);
rtcSetGeometryBoundsFunction(instance->geometry,instanceBoundsFunc,nullptr);
rtcSetGeometryIntersectFunction(instance->geometry,instanceIntersectFuncPtr);
rtcSetGeometryOccludedFunction (instance->geometry,instanceOccludedFuncPtr);
rtcCommitGeometry(instance->geometry);
rtcAttachGeometry(scene,instance->geometry);
rtcReleaseGeometry(instance->geometry);
return instance;
#else
Instance* instance = (Instance*) alignedUSMMalloc(sizeof(Instance),16);
instance->type = USER_GEOMETRY_INSTANCE;
instance->geometry = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(instance->geometry,object);
rtcSetGeometryTimeStepCount(instance->geometry,1);
rtcCommitGeometry(instance->geometry);
rtcAttachGeometryByID(scene,instance->geometry,geomID);
rtcReleaseGeometry(instance->geometry);
return instance;
#endif
}
void updateInstance (RTCScene scene, Instance* instance)
{
#if ENABLE_NATIVE_INSTANCING
rtcSetGeometryTransform(instance->geometry,0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&instance->local2world);
#endif
instance->world2local = rcp(instance->local2world);
instance->normal2world = transposed(rcp(instance->local2world.l));
rtcCommitGeometry(instance->geometry);
}
// ======================================================================== //
// User defined sphere geometry //
// ======================================================================== //
void sphereBoundsFunc(const struct RTCBoundsFunctionArguments* args)
{
const Sphere* spheres = (const Sphere*) args->geometryUserPtr;
RTCBounds* bounds_o = args->bounds_o;
const Sphere& sphere = spheres[args->primID];
bounds_o->lower_x = sphere.p.x-sphere.r;
bounds_o->lower_y = sphere.p.y-sphere.r;
bounds_o->lower_z = sphere.p.z-sphere.r;
bounds_o->upper_x = sphere.p.x+sphere.r;
bounds_o->upper_y = sphere.p.y+sphere.r;
bounds_o->upper_z = sphere.p.z+sphere.r;
}
RTC_SYCL_INDIRECTLY_CALLABLE void sphereIntersectFunc(const RTCIntersectFunctionNArguments* args)
{
int* valid = args->valid;
void* ptr = args->geometryUserPtr;
Ray *ray = (Ray*)args->rayhit;
RTCHit* hit = (RTCHit *)&ray->Ng.x;
unsigned int primID = args->primID;
assert(args->N == 1);
const Sphere* spheres = (const Sphere*)ptr;
const Sphere& sphere = spheres[primID];
if (!valid[0]) return;
valid[0] = 0;
const Vec3fa v = ray->org-sphere.p;
const float A = dot(ray->dir,ray->dir);
const float B = 2.0f*dot(v,ray->dir);
const float C = dot(v,v) - sqr(sphere.r);
const float D = B*B - 4.0f*A*C;
if (D < 0.0f) return;
const float Q = sqrt(D);
const float rcpA = rcp(A);
const float t0 = 0.5f*rcpA*(-B-Q);
const float t1 = 0.5f*rcpA*(-B+Q);
RTCHit potentialHit;
potentialHit.u = 0.0f;
potentialHit.v = 0.0f;
copyInstanceIdStack(args->context, potentialHit.instID);
potentialHit.geomID = sphere.geomID;
potentialHit.primID = primID;
if ((ray->tnear() < t0) & (t0 < ray->tfar))
{
int imask;
bool mask = 1;
{
imask = mask ? -1 : 0;
}
const Vec3fa Ng = ray->org+t0*ray->dir-sphere.p;
potentialHit.Ng_x = Ng.x;
potentialHit.Ng_y = Ng.y;
potentialHit.Ng_z = Ng.z;
RTCFilterFunctionNArguments fargs;
fargs.valid = (int*)&imask;
fargs.geometryUserPtr = ptr;
fargs.context = args->context;
fargs.ray = (RTCRayN *)args->rayhit;
fargs.hit = (RTCHitN*)&potentialHit;
fargs.N = 1;
const float old_t = ray->tfar;
ray->tfar = t0;
#if USE_ARGUMENT_CALLBACKS
contextFilterFunction(&fargs);
#else
rtcInvokeIntersectFilterFromGeometry(args,&fargs);
#endif
if (imask == -1) {
*hit = potentialHit;
valid[0] = -1;
}
else
ray->tfar = old_t;
}
if ((ray->tnear() < t1) & (t1 < ray->tfar))
{
int imask;
bool mask = 1;
{
imask = mask ? -1 : 0;
}
const Vec3fa Ng = ray->org+t1*ray->dir-sphere.p;
potentialHit.Ng_x = Ng.x;
potentialHit.Ng_y = Ng.y;
potentialHit.Ng_z = Ng.z;
RTCFilterFunctionNArguments fargs;
fargs.valid = (int*)&imask;
fargs.geometryUserPtr = ptr;
fargs.context = args->context;
fargs.ray = (RTCRayN *)args->rayhit;
fargs.hit = (RTCHitN*)&potentialHit;
fargs.N = 1;
const float old_t = ray->tfar;
ray->tfar = t1;
#if USE_ARGUMENT_CALLBACKS
contextFilterFunction(&fargs);
#else
rtcInvokeIntersectFilterFromGeometry(args,&fargs);
#endif
if (imask == -1) {
*hit = potentialHit;
valid[0] = -1;
}
else
ray->tfar = old_t;
}
}
RTC_SYCL_INDIRECTLY_CALLABLE void sphereOccludedFunc(const RTCOccludedFunctionNArguments* args)
{
int* valid = args->valid;
void* ptr = args->geometryUserPtr;
Ray *ray = (Ray*)args->ray;
unsigned int primID = args->primID;
assert(args->N == 1);
const Sphere* spheres = (const Sphere*) ptr;
const Sphere& sphere = spheres[primID];
if (!valid[0]) return;
valid[0] = 0;
const Vec3fa v = ray->org-sphere.p;
const float A = dot(ray->dir,ray->dir);
const float B = 2.0f*dot(v,ray->dir);
const float C = dot(v,v) - sqr(sphere.r);
const float D = B*B - 4.0f*A*C;
if (D < 0.0f) return;
const float Q = sqrt(D);
const float rcpA = rcp(A);
const float t0 = 0.5f*rcpA*(-B-Q);
const float t1 = 0.5f*rcpA*(-B+Q);
RTCHit potentialHit;
potentialHit.u = 0.0f;
potentialHit.v = 0.0f;
copyInstanceIdStack(args->context, potentialHit.instID);
potentialHit.geomID = sphere.geomID;
potentialHit.primID = primID;
if ((ray->tnear() < t0) & (t0 < ray->tfar))
{
int imask;
bool mask = 1;
{
imask = mask ? -1 : 0;
}
const Vec3fa Ng = ray->org+t0*ray->dir-sphere.p;
potentialHit.Ng_x = Ng.x;
potentialHit.Ng_y = Ng.y;
potentialHit.Ng_z = Ng.z;
RTCFilterFunctionNArguments fargs;
fargs.valid = (int*)&imask;
fargs.geometryUserPtr = ptr;
fargs.context = args->context;
fargs.ray = args->ray;
fargs.hit = (RTCHitN*)&potentialHit;
fargs.N = 1;
const float old_t = ray->tfar;
ray->tfar = t0;
#if USE_ARGUMENT_CALLBACKS
contextFilterFunction(&fargs);
#else
rtcInvokeOccludedFilterFromGeometry(args,&fargs);
#endif
if (imask == -1) {
ray->tfar = neg_inf;
valid[0] = -1;
}
else
ray->tfar = old_t;
}
if ((ray->tnear() < t1) & (t1 < ray->tfar))
{
int imask;
bool mask = 1;
{
imask = mask ? -1 : 0;
}
const Vec3fa Ng = ray->org+t1*ray->dir-sphere.p;
potentialHit.Ng_x = Ng.x;
potentialHit.Ng_y = Ng.y;
potentialHit.Ng_z = Ng.z;
RTCFilterFunctionNArguments fargs;
fargs.valid = (int*)&imask;
fargs.geometryUserPtr = ptr;
fargs.context = args->context;
fargs.ray = args->ray;
fargs.hit = (RTCHitN*)&potentialHit;
fargs.N = 1;
const float old_t = ray->tfar;
ray->tfar = t1;
#if USE_ARGUMENT_CALLBACKS
contextFilterFunction(&fargs);
#else
rtcInvokeOccludedFilterFromGeometry(args,&fargs);
#endif
if (imask == -1) {
ray->tfar = neg_inf;
valid[0] = -1;
}
else
ray->tfar = old_t;
}
}
RTC_SYCL_INDIRECTLY_CALLABLE void contextIntersectFunc(const RTCIntersectFunctionNArguments* args)
{
UserGeometryType* type = (UserGeometryType*) args->geometryUserPtr;
if (*type == USER_GEOMETRY_INSTANCE) instanceIntersectFunc(args);
else sphereIntersectFunc(args);
}
RTC_SYCL_INDIRECTLY_CALLABLE void contextOccludedFunc(const RTCOccludedFunctionNArguments* args)
{
UserGeometryType* type = (UserGeometryType*) args->geometryUserPtr;
if (*type == USER_GEOMETRY_INSTANCE) instanceOccludedFunc(args);
else sphereOccludedFunc(args);
}
/* intersection filter function */
RTC_SYCL_INDIRECTLY_CALLABLE void sphereFilterFunction(const RTCFilterFunctionNArguments* args)
{
int* valid = args->valid;
const RayQueryContext* context = (const RayQueryContext*) args->context;
struct Ray* ray = (struct Ray*)args->ray;
//struct RTCHit* hit = (struct RTCHit*)args->hit;
assert(args->N == 1);
/* avoid crashing when debug visualizations are used */
if (context == nullptr)
return;
/* ignore inactive rays */
if (valid[0] != -1) return;
/* carve out parts of the sphere */
const Vec3fa h = ray->org+ray->dir*ray->tfar;
float v = abs(sin(10.0f*h.x)*cos(10.0f*h.y)*sin(10.0f*h.z));
float T = clamp((v-0.1f)*3.0f,0.0f,1.0f);
/* reject some hits */
if (T < 0.5f) valid[0] = 0;
}
RTC_SYCL_INDIRECTLY_CALLABLE void contextFilterFunction(const RTCFilterFunctionNArguments* args)
{
int* valid = args->valid;
if (!valid[0]) return;
RTCHit* potential_hit = (RTCHit*) args->hit;
if (potential_hit->instID[0] == 0)
sphereFilterFunction(args);
}
Sphere* createAnalyticalSphere (RTCScene scene, const Vec3fa& p, float r)
{
RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
Sphere* sphere = (Sphere*) alignedUSMMalloc(sizeof(Sphere),16);
sphere->type = USER_GEOMETRY_SPHERE;
sphere->p = p;
sphere->r = r;
sphere->geometry = geom;
sphere->geomID = rtcAttachGeometry(scene,geom);
rtcSetGeometryUserPrimitiveCount(geom,1);
rtcSetGeometryUserData(geom,sphere);
rtcSetGeometryBoundsFunction(geom,sphereBoundsFunc,nullptr);
#if !USE_ARGUMENT_CALLBACKS
rtcSetGeometryIntersectFunction(geom,sphereIntersectFuncPtr);
rtcSetGeometryOccludedFunction (geom,sphereOccludedFuncPtr);
#endif
rtcCommitGeometry(geom);
rtcReleaseGeometry(geom);
return sphere;
}
Sphere* createAnalyticalSpheres (RTCScene scene, unsigned int N)
{
RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
Sphere* spheres = (Sphere*) alignedUSMMalloc((N)*sizeof(Sphere),16);
unsigned int geomID = rtcAttachGeometry(scene,geom);
for (unsigned int i=0; i<N; i++) {
spheres[i].type = USER_GEOMETRY_SPHERE;
spheres[i].geometry = geom;
spheres[i].geomID = geomID;
}
rtcSetGeometryUserPrimitiveCount(geom,N);
rtcSetGeometryUserData(geom,spheres);
rtcSetGeometryBoundsFunction(geom,sphereBoundsFunc,nullptr);
#if !USE_ARGUMENT_CALLBACKS
rtcSetGeometryIntersectFunction(geom,sphereIntersectFuncPtr);
rtcSetGeometryOccludedFunction (geom,sphereOccludedFuncPtr);
#endif
#if !USE_ARGUMENT_CALLBACKS
rtcSetGeometryIntersectFilterFunction(geom,sphereFilterFuncPtr);
rtcSetGeometryOccludedFilterFunction(geom,sphereFilterFuncPtr);
#endif
rtcCommitGeometry(geom);
rtcReleaseGeometry(geom);
return spheres;
}
// ======================================================================== //
// Triangular sphere geometry //
// ======================================================================== //
unsigned int createTriangulatedSphere (RTCScene scene, const Vec3fa& p, float r)
{
/* create triangle mesh */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* map triangle and vertex buffers */
Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),numTheta*(numPhi+1));
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2*numTheta*(numPhi-1));
/* create sphere */
int tri = 0;
const float rcpNumTheta = rcp((float)numTheta);
const float rcpNumPhi = rcp((float)numPhi);
for (int phi=0; phi<=numPhi; phi++)
{
for (int theta=0; theta<numTheta; theta++)
{
const float phif = phi*float(pi)*rcpNumPhi;
const float thetaf = theta*2.0f*float(pi)*rcpNumTheta;
Vertex& v = vertices[phi*numTheta+theta];
v.x = p.x + r*sin(phif)*sin(thetaf);
v.y = p.y + r*cos(phif);
v.z = p.z + r*sin(phif)*cos(thetaf);
}
if (phi == 0) continue;
for (int theta=1; theta<=numTheta; theta++)
{
int p00 = (phi-1)*numTheta+theta-1;
int p01 = (phi-1)*numTheta+theta%numTheta;
int p10 = phi*numTheta+theta-1;
int p11 = phi*numTheta+theta%numTheta;
if (phi > 1) {
triangles[tri].v0 = p10;
triangles[tri].v1 = p00;
triangles[tri].v2 = p01;
tri++;
}
if (phi < numPhi) {
triangles[tri].v0 = p11;
triangles[tri].v1 = p10;
triangles[tri].v2 = p01;
tri++;
}
}
}
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* creates a ground plane */
unsigned int createGroundPlane (RTCScene scene)
{
/* create a triangulated plane with 2 triangles and 4 vertices */
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
/* set vertices */
Vertex* vertices = (Vertex*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,sizeof(Vertex),4);
vertices[0].x = -10; vertices[0].y = -2; vertices[0].z = -10;
vertices[1].x = -10; vertices[1].y = -2; vertices[1].z = +10;
vertices[2].x = +10; vertices[2].y = -2; vertices[2].z = -10;
vertices[3].x = +10; vertices[3].y = -2; vertices[3].z = +10;
/* set triangles */
Triangle* triangles = (Triangle*) rtcSetNewGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,sizeof(Triangle),2);
triangles[0].v0 = 0; triangles[0].v1 = 2; triangles[0].v2 = 1;
triangles[1].v0 = 1; triangles[1].v1 = 2; triangles[1].v2 = 3;
rtcCommitGeometry(geom);
unsigned int geomID = rtcAttachGeometry(scene,geom);
rtcReleaseGeometry(geom);
return geomID;
}
/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
instanceIntersectFuncPtr = GET_FUNCTION_POINTER(instanceIntersectFunc);
instanceOccludedFuncPtr = GET_FUNCTION_POINTER(instanceOccludedFunc );
sphereIntersectFuncPtr = GET_FUNCTION_POINTER(sphereIntersectFunc);
sphereOccludedFuncPtr = GET_FUNCTION_POINTER(sphereOccludedFunc );
sphereFilterFuncPtr = GET_FUNCTION_POINTER(sphereFilterFunction);
/* create scene */
TutorialData_Constructor(&data);
g_scene = data.g_scene = rtcNewScene(g_device);
/* create scene with 4 analytical spheres */
data.g_scene0 = rtcNewScene(g_device);
rtcSetSceneBuildQuality(data.g_scene0,RTC_BUILD_QUALITY_LOW);
data.g_spheres = createAnalyticalSpheres(data.g_scene0,4);
data.g_spheres[0].p = Vec3fa( 0, 0,+1); data.g_spheres[0].r = 0.5f;
data.g_spheres[1].p = Vec3fa(+1, 0, 0); data.g_spheres[1].r = 0.5f;
data.g_spheres[2].p = Vec3fa( 0, 0,-1); data.g_spheres[2].r = 0.5f;
data.g_spheres[3].p = Vec3fa(-1, 0, 0); data.g_spheres[3].r = 0.5f;
rtcCommitScene(data.g_scene0);
/* create scene with 4 triangulated spheres */
data.g_scene1 = rtcNewScene(g_device);
createTriangulatedSphere(data.g_scene1,Vec3fa( 0, 0,+1),0.5f);
createTriangulatedSphere(data.g_scene1,Vec3fa(+1, 0, 0),0.5f);
createTriangulatedSphere(data.g_scene1,Vec3fa( 0, 0,-1),0.5f);
createTriangulatedSphere(data.g_scene1,Vec3fa(-1, 0, 0),0.5f);
rtcCommitScene(data.g_scene1);
/* create scene with 2 triangulated and 2 analytical spheres */
data.g_scene2 = rtcNewScene(g_device);
createTriangulatedSphere(data.g_scene2,Vec3fa( 0, 0,+1),0.5f);
data.g_sphere0 = createAnalyticalSphere (data.g_scene2,Vec3fa(+1, 0, 0),0.5f);
createTriangulatedSphere(data.g_scene2,Vec3fa( 0, 0,-1),0.5f);
data.g_sphere1 = createAnalyticalSphere (data.g_scene2,Vec3fa(-1, 0, 0),0.5f);
rtcCommitScene(data.g_scene2);
/* instantiate geometry */
data.g_instance[0] = createInstance(data.g_scene,data.g_scene0,0,Vec3fa(-2,-2,-2),Vec3fa(+2,+2,+2));
data.g_instance[1] = createInstance(data.g_scene,data.g_scene1,1,Vec3fa(-2,-2,-2),Vec3fa(+2,+2,+2));
data.g_instance[2] = createInstance(data.g_scene,data.g_scene2,2,Vec3fa(-2,-2,-2),Vec3fa(+2,+2,+2));
data.g_instance[3] = createInstance(data.g_scene,data.g_scene2,3,Vec3fa(-2,-2,-2),Vec3fa(+2,+2,+2));
createGroundPlane(data.g_scene);
rtcCommitScene(data.g_scene);
/* set all colors */
data.colors[4*0+0] = Vec3fa(0.25f, 0.00f, 0.00f);
data.colors[4*0+1] = Vec3fa(0.50f, 0.00f, 0.00f);
data.colors[4*0+2] = Vec3fa(0.75f, 0.00f, 0.00f);
data.colors[4*0+3] = Vec3fa(1.00f, 0.00f, 0.00f);
data.colors[4*1+0] = Vec3fa(0.00f, 0.25f, 0.00f);
data.colors[4*1+1] = Vec3fa(0.00f, 0.50f, 0.00f);
data.colors[4*1+2] = Vec3fa(0.00f, 0.75f, 0.00f);
data.colors[4*1+3] = Vec3fa(0.00f, 1.00f, 0.00f);
data.colors[4*2+0] = Vec3fa(0.00f, 0.00f, 0.25f);
data.colors[4*2+1] = Vec3fa(0.00f, 0.00f, 0.50f);
data.colors[4*2+2] = Vec3fa(0.00f, 0.00f, 0.75f);
data.colors[4*2+3] = Vec3fa(0.00f, 0.00f, 1.00f);
data.colors[4*3+0] = Vec3fa(0.25f, 0.25f, 0.00f);
data.colors[4*3+1] = Vec3fa(0.50f, 0.50f, 0.00f);
data.colors[4*3+2] = Vec3fa(0.75f, 0.75f, 0.00f);
data.colors[4*3+3] = Vec3fa(1.00f, 1.00f, 0.00f);
data.colors[4*4+0] = Vec3fa(1.0f, 1.0f, 1.0f);
data.colors[4*4+1] = Vec3fa(1.0f, 1.0f, 1.0f);
data.colors[4*4+2] = Vec3fa(1.0f, 1.0f, 1.0f);
data.colors[4*4+3] = Vec3fa(1.0f, 1.0f, 1.0f);
}
inline Vec3fa face_forward(const Vec3fa& dir, const Vec3fa& _Ng) {
const Vec3fa Ng = _Ng;
return dot(dir,Ng) < 0.0f ? Ng : neg(Ng);
}
/* task that renders a single screen tile */
Vec3fa renderPixelStandard(const TutorialData& data,
float x, float y, const ISPCCamera& camera,
RayStats& stats)
{
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p),
Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)),
0.0f, inf, 0.0f, -1,
RTC_INVALID_GEOMETRY_ID, RTC_INVALID_GEOMETRY_ID);
/* intersect ray with scene */
RTCIntersectArguments iargs;
rtcInitIntersectArguments(&iargs);
#if USE_ARGUMENT_CALLBACKS
iargs.filter = contextFilterFunction;
#endif
#if USE_ARGUMENT_CALLBACKS
iargs.intersect = contextIntersectFunc;
#endif
iargs.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
rtcTraversableIntersect1(data.g_traversable,RTCRayHit_(ray),&iargs);
RayStats_addRay(stats);
/* shade pixels */
Vec3fa color = Vec3fa(0.0f);
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
/* calculate shading normal in world space */
Vec3fa Ns = ray.Ng;
if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID) {
Ns = xfmVector(data.g_instance[ray.instID[0]]->normal2world,Vec3fa(Ns));
}
Ns = face_forward(ray.dir,normalize(Ns));
/* calculate diffuse color of geometries */
Vec3fa diffuse = Vec3fa(0.0f);
if (ray.instID[0] == 0) diffuse = data.colors[4*ray.instID[0]+ray.primID];
else if (ray.instID[0] == -1) diffuse = data.colors[4*4+ray.primID];
else diffuse = data.colors[4*ray.instID[0]+ray.geomID];
color = color + diffuse*0.5f;
/* initialize shadow ray */
Vec3fa lightDir = normalize(Vec3fa(-1,-1,-1));
Ray shadow(ray.org + 0.999f*ray.tfar*ray.dir, neg(lightDir), 0.001f, inf);
/* trace shadow ray */
RTCOccludedArguments sargs;
rtcInitOccludedArguments(&sargs);
#if USE_ARGUMENT_CALLBACKS
sargs.filter = contextFilterFunction;
#endif
#if USE_ARGUMENT_CALLBACKS
sargs.occluded = contextOccludedFunc;
#endif
sargs.feature_mask = (RTCFeatureFlags) (FEATURE_MASK);
rtcTraversableOccluded1(data.g_traversable,RTCRay_(shadow),&sargs);
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f)
color = color + diffuse*clamp(-dot(lightDir,Ns),0.0f,1.0f);
}
return color;
}
void renderPixelStandard(const TutorialData& data,
int x, int y,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera, RayStats& stats)
{
Vec3fa color = renderPixelStandard(data,x,y,camera,stats);
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
/* renders a single screen tile */
void renderTileStandard(int taskIndex,
int threadIndex,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0+TILE_SIZE_X,width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0+TILE_SIZE_Y,height);
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
renderPixelStandard(data,x,y,pixels,width,height,time,camera,g_stats[threadIndex]);
}
}
/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
extern "C" void renderFrameStandard (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
TutorialData ldata = data;
sycl::event event = global_gpu_queue->submit([=](sycl::handler& cgh){
const sycl::nd_range<2> nd_range = make_nd_range(height,width);
cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item) {
const unsigned int x = item.get_global_id(1); if (x >= width ) return;
const unsigned int y = item.get_global_id(0); if (y >= height) return;
RayStats stats;
renderPixelStandard(ldata,x,y,pixels,width,height,time,camera,stats);
});
});
global_gpu_queue->wait_and_throw();
const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();
const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();
const double dt = (t1-t0)*1E-9;
((ISPCCamera*)&camera)->render_time = dt;
#else
/* render all pixels */
const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
});
#endif
}
/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
float t0 = 0.7f*time;
float t1 = 1.5f*time;
/* rotate instances around themselves */
LinearSpace3fa xfm;
xfm.vx = Vec3fa(cos(t1),0,sin(t1));
xfm.vy = Vec3fa(0,1,0);
xfm.vz = Vec3fa(-sin(t1),0,cos(t1));
/* calculate transformations to move instances in circles */
data.g_instance[0]->local2world = AffineSpace3fa(xfm,2.2f*Vec3fa(+cos(t0),0.0f,+sin(t0)));
data.g_instance[1]->local2world = AffineSpace3fa(xfm,2.2f*Vec3fa(-cos(t0),0.0f,-sin(t0)));
data.g_instance[2]->local2world = AffineSpace3fa(xfm,2.2f*Vec3fa(-sin(t0),0.0f,+cos(t0)));
data.g_instance[3]->local2world = AffineSpace3fa(xfm,2.2f*Vec3fa(+sin(t0),0.0f,-cos(t0)));
/* update scene */
updateInstance(data.g_scene,data.g_instance[0]);
updateInstance(data.g_scene,data.g_instance[1]);
updateInstance(data.g_scene,data.g_instance[2]);
updateInstance(data.g_scene,data.g_instance[3]);
rtcCommitScene (data.g_scene);
data.g_traversable = rtcGetSceneTraversable(data.g_scene);
}
/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
TutorialData_Destructor(&data);
}
} // namespace embree
|