1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial_device.isph"
#include "../common/math/random_sampler.isph"
#include "../common/math/sampling.isph"
#include "../common/tutorial/scene_device.h"
/* the scene to render */
extern RTCScene g_scene;
extern ISPCScene* uniform g_ispc_scene;
/* intensity scaling for traversal cost visualization */
extern uniform float scale;
extern uniform bool g_changed;
extern uniform float g_debug;
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
static const sycl::specialization_id<RTCFeatureFlags> spec_feature_mask;
#endif
extern uniform RTCFeatureFlags g_feature_mask;
struct DebugShaderData
{
RTCScene scene;
RTCTraversable traversable;
ISPCScene* uniform ispc_scene;
/* intensity scaling for traversal cost visualization */
uniform float scale;
uniform float debug;
uniform Shader shader;
};
void DebugShaderData_Constructor(uniform DebugShaderData* uniform This)
{
This->scene = g_scene;
This->traversable = rtcGetSceneTraversable(g_scene);
This->ispc_scene = g_ispc_scene;
This->scale = scale;
This->debug = g_debug;
This->shader = shader;
}
#define RENDER_FRAME_FUNCTION_ISPC(Name) \
void renderTile##Name(uniform int taskIndex, \
uniform int threadIndex, \
const uniform DebugShaderData& data, \
uniform int* uniform pixels, \
const uniform unsigned int width, \
const uniform unsigned int height, \
const uniform float time, \
const uniform ISPCCamera& camera, \
const uniform int numTilesX, \
const uniform int numTilesY) \
{ \
const uniform int t = taskIndex; \
const uniform unsigned int tileY = t / numTilesX; \
const uniform unsigned int tileX = t - tileY * numTilesX; \
const uniform unsigned int x0 = tileX * TILE_SIZE_X; \
const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width); \
const uniform unsigned int y0 = tileY * TILE_SIZE_Y; \
const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height); \
\
foreach_tiled (y = y0 ... y1, x = x0 ... x1) \
{ \
Vec3f color = renderPixel##Name(data,(float)x,(float)y,camera,g_stats[threadIndex],RTC_FEATURE_FLAG_ALL); \
\
/* write color to framebuffer */ \
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f)); \
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f)); \
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f)); \
pixels[y*width+x] = (b << 16) + (g << 8) + r; \
} \
} \
\
task void renderTileTask##Name(const uniform DebugShaderData& data, \
uniform int* uniform pixels, \
const uniform unsigned int width, \
const uniform unsigned int height, \
const uniform float time, \
const uniform ISPCCamera& camera, \
const uniform int numTilesX, \
const uniform int numTilesY) \
{ \
renderTile##Name(taskIndex,threadIndex,data,pixels,width,height,time,camera,numTilesX,numTilesY); \
} \
\
export void renderFrame##Name (uniform int* uniform pixels, \
const uniform unsigned int width, \
const uniform unsigned int height, \
const uniform float time, \
const uniform ISPCCamera& camera) \
{ \
uniform DebugShaderData data; \
DebugShaderData_Constructor(&data); \
const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X; \
const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y; \
launch[numTilesX*numTilesY] renderTileTask##Name(data,pixels,width,height,time,camera,numTilesX,numTilesY); sync; \
}
#define RENDER_FRAME_FUNCTION_CPP(Name) \
void renderTile##Name(uniform int taskIndex, \
uniform int threadIndex, \
const DebugShaderData& data, \
uniform int* uniform pixels, \
const uniform unsigned int width, \
const uniform unsigned int height, \
const uniform float time, \
const uniform ISPCCamera& camera, \
const uniform int numTilesX, \
const uniform int numTilesY) \
{ \
const uniform int t = taskIndex; \
const uniform unsigned int tileY = t / numTilesX; \
const uniform unsigned int tileX = t - tileY * numTilesX; \
const uniform unsigned int x0 = tileX * TILE_SIZE_X; \
const uniform unsigned int x1 = min(x0+TILE_SIZE_X,width); \
const uniform unsigned int y0 = tileY * TILE_SIZE_Y; \
const uniform unsigned int y1 = min(y0+TILE_SIZE_Y,height); \
\
foreach_tiled (y = y0 ... y1, x = x0 ... x1) \
{ \
Vec3f color = renderPixel##Name(data,(float)x,(float)y,camera,g_stats[threadIndex],RTC_FEATURE_FLAG_ALL); \
\
/* write color to framebuffer */ \
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f)); \
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f)); \
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f)); \
pixels[y*width+x] = (b << 16) + (g << 8) + r; \
} \
} \
\
void renderTileTask##Name(int taskIndex, int threadIndex, \
const DebugShaderData& data, \
uniform int* uniform pixels, \
const uniform unsigned int width, \
const uniform unsigned int height, \
const uniform float time, \
const uniform ISPCCamera& camera, \
const uniform int numTilesX, \
const uniform int numTilesY) \
{ \
renderTile##Name(taskIndex,threadIndex,data,pixels,width,height,time,camera,numTilesX,numTilesY); \
} \
\
extern "C" void renderFrame##Name (uniform int* uniform pixels, \
const uniform unsigned int width, \
const uniform unsigned int height, \
const uniform float time, \
const uniform ISPCCamera& camera) \
{ \
DebugShaderData data; \
DebugShaderData_Constructor(&data); \
const uniform int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X; \
const uniform int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y; \
parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) { \
const int threadIndex = (int)TaskScheduler::threadIndex(); \
for (size_t i=range.begin(); i<range.end(); i++) \
renderTileTask##Name((int)i,threadIndex,data,pixels,width,height,time,camera,numTilesX,numTilesY); \
}); \
}
#define RENDER_FRAME_FUNCTION_SYCL(Name) \
extern "C" void renderFrame##Name (uniform int* uniform pixels, \
const uniform unsigned int width, \
const uniform unsigned int height, \
const uniform float time, \
const uniform ISPCCamera& camera) \
{ \
DebugShaderData data; \
DebugShaderData_Constructor(&data); \
sycl::event event; \
\
event = global_gpu_queue->submit([=](sycl::handler& cgh) {\
cgh.set_specialization_constant<spec_feature_mask>(g_feature_mask);\
const sycl::nd_range<2> nd_range = make_nd_range(height,width); \
cgh.parallel_for(nd_range,[=](sycl::nd_item<2> item, sycl::kernel_handler kh) { \
const unsigned int x = item.get_global_id(1); if (x >= width ) return; \
const unsigned int y = item.get_global_id(0); if (y >= height) return; \
RayStats stats; \
const RTCFeatureFlags feature_mask = kh.get_specialization_constant<spec_feature_mask>(); \
Vec3fa color = renderPixel##Name(data,x,y,camera,stats,feature_mask); \
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f)); \
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f)); \
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f)); \
pixels[y*width+x] = (b << 16) + (g << 8) + r; \
}); \
}); \
global_gpu_queue->wait_and_throw();\
\
const auto t0 = event.template get_profiling_info<sycl::info::event_profiling::command_start>();\
const auto t1 = event.template get_profiling_info<sycl::info::event_profiling::command_end>();\
const double dt = (t1-t0)*1E-9;\
((ISPCCamera*)&camera)->render_time = dt;\
}
Vec3f randomColor(const int ID)
{
int r = ((ID+13)*17*23) & 255;
int g = ((ID+15)*11*13) & 255;
int b = ((ID+17)* 7*19) & 255;
const float oneOver255f = 1.f/255.f;
return make_Vec3f(r*oneOver255f,g*oneOver255f,b*oneOver255f);
}
/* renders a single pixel with eyelight shading */
Vec3f renderPixelDebugShader(const uniform DebugShaderData& data, float x, float y, const uniform ISPCCamera& camera, uniform RayStats& stats, const uniform RTCFeatureFlags feature_mask)
{
/* initialize ray */
Ray ray;
ray.org = make_Vec3f_(camera.xfm.p);
ray.dir = make_Vec3f_(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz));
ray.tnear = 0.0f;
ray.tfar = inf;
ray.geomID = RTC_INVALID_GEOMETRY_ID;
ray.primID = RTC_INVALID_GEOMETRY_ID;
ray.mask = -1;
ray.time = data.debug;
/* intersect ray with scene */
uniform int64 c0 = get_tsc();
if (data.shader == SHADER_OCCLUSION)
{
uniform RTCOccludedArguments args;
rtcInitOccludedArguments(&args);
args.feature_mask = feature_mask;
rtcTraversableOccludedV(data.traversable,RTCRay_(ray),&args);
}
else
{
uniform RTCIntersectArguments args;
rtcInitIntersectArguments(&args);
args.feature_mask = feature_mask;
rtcTraversableIntersectV(data.traversable,RTCRayHit_(ray),&args);
}
uniform int64 c1 = get_tsc();
RayStats_addRay(stats);
/* shade pixel */
switch (data.shader)
{
case SHADER_EYELIGHT:
if (ray.geomID == RTC_INVALID_GEOMETRY_ID)
return make_Vec3f(0.0f);
else if (dot(ray.dir,ray.Ng) < 0.0f)
return make_Vec3f(0.0f,abs(dot(ray.dir,normalize(ray.Ng))),0.0f);
else
return make_Vec3f(abs(dot(ray.dir,normalize(ray.Ng))),0.0f,0.0f);
case SHADER_OCCLUSION:
if (ray.tfar >= 0.0f)
return make_Vec3f(0.0f,0.0f,0.0f);
else
return make_Vec3f(1.0f,1.0f,1.0f);
case SHADER_UV:
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) return make_Vec3f(0.0f,0.0f,0.0f);
else return make_Vec3f(ray.u,ray.v,1.0f-ray.u-ray.v);
case SHADER_TEXCOORDS:
case SHADER_TEXCOORDS_GRID:
#if !defined(__SYCL_DEVICE_ONLY__)
if (ray.geomID == RTC_INVALID_GEOMETRY_ID)
return make_Vec3f(0.0f,0.0f,1.0f);
else if (data.ispc_scene)
{
Vec2f st = make_Vec2f(0,0);
foreach_unique (geomID in ray.geomID) {
RTCGeometry geometry = rtcGetGeometry(data.scene,geomID);
rtcInterpolateV0(geometry,ray.primID,ray.u,ray.v,RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE,2,&st.x,2);
}
if (data.shader == SHADER_TEXCOORDS)
return make_Vec3f(st.x,st.y,0.0f);
else
return ((int)(10.0f*st.x)+(int)(10.0f*st.y)) % 2 == 0 ? make_Vec3f(1,0,0) : make_Vec3f(0,1,0);
}
#endif
return make_Vec3f(1.0f);
case SHADER_NG:
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) return make_Vec3f(0.0f,0.0f,0.0f);
else return abs(normalize(make_Vec3f(ray.Ng.x,ray.Ng.y,ray.Ng.z)));
//else return normalize(make_Vec3f(ray.Ng.x,ray.Ng.y,ray.Ng.z));
case SHADER_GEOMID:
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) return make_Vec3f(0.0f);
else return randomColor(ray.geomID);
case SHADER_GEOMID_PRIMID:
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) return make_Vec3f(0.0f);
else return randomColor(ray.geomID ^ ray.primID)*make_Vec3f(abs(dot(ray.dir,normalize(ray.Ng))));
case SHADER_CYCLES:
return make_Vec3f((uniform float)(c1-c0)*data.scale,0.0f,0.0f);
case SHADER_AO:
return make_Vec3f(0,0,0);
case SHADER_DEFAULT:
return make_Vec3f(0,0,0);
}
return make_Vec3f(0,0,0);
}
/* renders a single pixel with eyelight shading */
Vec3f renderPixelAOShader(const uniform DebugShaderData& data, float x, float y, const uniform ISPCCamera& camera, uniform RayStats& stats, const uniform RTCFeatureFlags feature_mask)
{
/* initialize ray */
Ray ray;
ray.org = make_Vec3f_(camera.xfm.p);
ray.dir = make_Vec3f_(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz));
ray.tnear = 0.0f;
ray.tfar = inf;
ray.geomID = RTC_INVALID_GEOMETRY_ID;
ray.primID = RTC_INVALID_GEOMETRY_ID;
ray.mask = -1;
ray.time = data.debug;
/* intersect ray with scene */
uniform RTCIntersectArguments args;
rtcInitIntersectArguments(&args);
args.feature_mask = feature_mask;
rtcTraversableIntersectV(data.traversable,RTCRayHit_(ray),&args);
RayStats_addRay(stats);
/* shade pixel */
if (ray.geomID == RTC_INVALID_GEOMETRY_ID) return make_Vec3f(0.0f);
Vec3f Ng = normalize(ray.Ng);
Vec3f Nf = faceforward(Ng,ray.dir,Ng);
Vec3f col = make_Vec3f(min(1.f,.3f+.8f*abs(dot(Ng,normalize(ray.dir)))));
/* calculate hit point */
float intensity = 0;
Vec3f hitPos = ray.org + ray.tfar * ray.dir;
#define AMBIENT_OCCLUSION_SAMPLES 64
/* trace some ambient occlusion rays */
RandomSampler sampler;
RandomSampler_init(sampler, (int)x, (int)y, 0);
for (uniform int i=0; i<AMBIENT_OCCLUSION_SAMPLES; i++)
{
Vec2f sample = RandomSampler_get2D(sampler);
Sample3f dir = cosineSampleHemisphere(sample.x,sample.y,Nf);
/* initialize shadow ray */
Ray shadow;
shadow.org = make_Vec3f_(hitPos);
shadow.dir = make_Vec3f_(dir.v);
shadow.tnear = 0.001f;
shadow.tfar = inf;
shadow.geomID = RTC_INVALID_GEOMETRY_ID;
shadow.primID = RTC_INVALID_GEOMETRY_ID;
shadow.mask = -1;
shadow.time = data.debug;
/* trace shadow ray */
uniform RTCOccludedArguments args;
rtcInitOccludedArguments(&args);
args.feature_mask = feature_mask;
rtcTraversableOccludedV(data.traversable,RTCRay_(shadow),&args);
RayStats_addShadowRay(stats);
/* add light contribution */
if (shadow.tfar >= 0.0f)
intensity += 1.0f;
}
intensity *= 1.0f/AMBIENT_OCCLUSION_SAMPLES;
/* shade pixel */
return col * intensity;
}
#if defined(EMBREE_SYCL_TUTORIAL) && !defined(EMBREE_SYCL_RT_SIMULATION)
RENDER_FRAME_FUNCTION_SYCL(DebugShader)
RENDER_FRAME_FUNCTION_SYCL(AOShader)
#else
RENDER_FRAME_FUNCTION_ISPC(DebugShader)
RENDER_FRAME_FUNCTION_ISPC(AOShader)
#endif
|