1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
C Copyright 1981-2007 ECMWF
C
C Licensed under the GNU Lesser General Public License which
C incorporates the terms and conditions of version 3 of the GNU
C General Public License.
C See LICENSE and gpl-3.0.txt for details.
C
INTEGER FUNCTION IGTRAN (PMAT, KINCOL, KINROW, KMOVE, KLEN,
1 KPR, KERR)
C
C---->
C**** *IGTRAN*
C
C PURPOSE
C _______
C
C This routine transposes a rectangular matrix.
C
C INTERFACE
C _________
C
C IERR = IGTRAN (PMAT, KINCOL, KINROW, KMOVE, KLEN, KPR, KERR)
C
C Input parameters
C ________________
C
C PMAT - The input matrix of length KINCOL * KINROW.
C
C KINCOL - The length of the first dimension on entry and
C second dimension on exit.
C
C KINROW - The length of the second dimension on entry and
C first dimension on exit.
C
C KMOVE - Work array used to store information to speed up
C the process.
C
C KLEN - Length of array KMOVE. The recommended length is
C (KINCOL + KINROW) / 2.
C
C KPR - The debug print switch.
C 0 , No debugging output.
C 1 , Produce debugging output.
C
C KERR - The error control flag.
C (No longer used, kept for backward compatibility.
C Used to be used as follows:
C -ve, No error message. Return error code.
C 0 , Hard failure with error message.
C +ve, Print error message. Return error code.)
C
C Output parameters
C ________________
C
C PMAT - The transposed matrix.
C
C Return value
C ____________
C
C The error indicator (INTEGER).
C
C 7401 KLEN was less than 1.
C 7402 A failure during transposition (should never happen).
C
C
C Common block usage
C __________________
C
C None
C
C EXTERNALS
C _________
C
C INTLOG - Generate log messages.
C
C
C METHOD
C ______
C
C This algorithm uses the cyclic structure of transposition to
C perform a transposition in place with a minimum amount of work
C storage.
C
C REFERENCE
C _________
C
C Esko G. Cate and David W. Twigg Analysis of In-Situ
C Transposition
C CACM Algorithm 513
C
C
C COMMENTS
C ________
C
C None.
C
C
C AUTHOR
C ______
C
C K. Fielding *ECMWF* Jan 1994
C
C
C MODIFICATIONS
C _____________
C
C J.D.Chambers ECMWF Sept 1995
C
C----<
C _______________________________________________________
C
IMPLICIT NONE
C
#include "parim.h"
C
C Function arguments
C
INTEGER KINCOL, KINROW, KLEN, KPR, KERR
INTEGER KMOVE(KLEN)
REAL PMAT (KINCOL * KINROW)
C
C Local variables
INTEGER ICOUNT, IRMULC, IR0, IR1, IR2, IPOINT, IKMI, IP1, IP2,
X IRMCM1, IP1C, IP2C, IROWP1, ICOLM1, ISTART
INTEGER JST, JINROW, JINCOL
REAL ZMIP1, ZMIP1C, ZTEMP
C
C Parameters
INTEGER JPROUTINE
PARAMETER (JPROUTINE = 7400)
C
C _______________________________________________________
C
C* Section 1. Initialisation
C _______________________________________________________
C
100 CONTINUE
C
IF (KPR .GE. 1) CALL INTLOG(JP_DEBUG,'IGTRAN: Section 1.',JPQUIET)
C
IGTRAN = 0
C
IF (KPR .GE. 1) THEN
CALL INTLOG(JP_DEBUG,'IGTRAN: Input parameters.',JPQUIET)
CALL INTLOG(JP_DEBUG,'IGTRAN: 1st matrix dimension = ',KINCOL)
CALL INTLOG(JP_DEBUG,'IGTRAN: 2nd matrix dimension = ',KINROW)
CALL INTLOG(JP_DEBUG,'IGTRAN: Work array length = ',KLEN)
CALL INTLOG(JP_DEBUG,
X 'IGTRAN: Recommended length = ',(KINCOL + KINROW) / 2)
ENDIF
C
IF (KINCOL .LE. 1 .OR. KINROW .LE. 1) GO TO 900
C
C _______________________________________________________
C
C* Section 2. Rectangular transposition setup
C _______________________________________________________
C
200 CONTINUE
C
IF (KPR .GE. 1) CALL INTLOG(JP_DEBUG,'IGTRAN: Section 2.',JPQUIET)
C
IF (KINCOL .NE. KINROW) THEN
C
IF (KLEN .LT. 1) THEN
IGTRAN = JPROUTINE + 1
CALL INTLOG(JP_ERROR,'IGTRAN: Work array size = ',KLEN)
CALL INTLOG(JP_ERROR,'IGTRAN: Must be at least 1.',JPQUIET)
GO TO 900
ENDIF
C
ICOUNT = 2
IRMULC = KINCOL * KINROW
IRMCM1 = IRMULC - 1
C
DO 210 JST = 1, KLEN
KMOVE (JST) = 0
210 CONTINUE
C
IF (KINCOL .GT. 2 .AND. KINROW .GT. 2) THEN
C
C Calculate the number of fixed points, Euclids algorithm
C for GCD (m - 1, n - 1)
C
IR2 = KINCOL - 1
IR1 = KINROW - 1
C
220 CONTINUE
IR0 = MOD (IR2, IR1)
IR2 = IR1
IR1 = IR0
IF (IR0 .NE. 0) GO TO 220
C
ICOUNT = ICOUNT + IR2 - 1
C
ENDIF
C
C Set initial values for search
C
ISTART = 1
IPOINT = KINCOL
C
C At least one loop must be rearranged so branch into loop
C
GO TO 330
C
C _______________________________________________________
C
C* Section 3. Rectangular transposition main loop
C _______________________________________________________
C
310 CONTINUE
C
C Search for loops to rearrange
C
IKMI = IRMCM1 - ISTART
ISTART = ISTART + 1
C
IF (ISTART .GT. IKMI) THEN
IGTRAN = JPROUTINE + 2
CALL INTLOG(JP_ERROR,
X 'IGTRAN: Fail during transposition.',JPQUIET)
GO TO 900
ENDIF
C
IPOINT = IPOINT + KINCOL
C
IF (IPOINT .GT. IRMCM1) IPOINT = IPOINT - IRMCM1
C
IP2 = IPOINT
C
IF (ISTART .EQ. IP2) GO TO 310
C
IF (ISTART .GT. KLEN) THEN
C
320 CONTINUE
C
C Loop exit condition
C
IF (IP2 .LE. ISTART .OR. IP2 .GE. IKMI) THEN
IF (IP2 .NE. ISTART) THEN
GO TO 310
ELSE
GO TO 330
ENDIF
ENDIF
IP1 = IP2
IP2 = KINCOL * IP1 - IRMCM1 * (IP1 / KINROW)
GO TO 320
ENDIF
C
IF (KMOVE (ISTART) .NE. 0) GO TO 310
C
C Rearrange the elements of a loop and its companion loop
C
C Entry into loop on first pass
C
330 CONTINUE
C
IP1 = ISTART
IKMI = IRMCM1 - ISTART
ZMIP1 = PMAT (IP1 + 1)
IP1C = IKMI
ZMIP1C = PMAT (IP1C + 1)
C
340 CONTINUE
IP2 = KINCOL * IP1 - IRMCM1 * (IP1 / KINROW)
IP2C = IRMCM1 - IP2
C
IF (IP1 .LE. KLEN) KMOVE (IP1) = 2
IF (IP1C .LE. KLEN) KMOVE (IP1C) = 2
C
ICOUNT = ICOUNT + 2
C
C Loop exit conditions
C
IF (IP2 .EQ. ISTART) GO TO 360
IF (IP2 .EQ. IKMI) GO TO 350
C
PMAT (IP1 + 1) = PMAT(IP2 + 1)
PMAT (IP1C + 1) = PMAT(IP2C + 1)
IP1 = IP2
IP1C = IP2C
C
GO TO 340
C
350 CONTINUE
C
ZTEMP = ZMIP1
ZMIP1 = ZMIP1C
ZMIP1C = ZTEMP
C
360 CONTINUE
C
PMAT (IP1 + 1) = ZMIP1
PMAT (IP1C + 1) = ZMIP1C
C
IF (ICOUNT .LT. IRMULC) GO TO 310
C
ELSE
C
C _______________________________________________________
C
C* Section 4. Square transposition
C _______________________________________________________
C
400 CONTINUE
C
IF (KPR.GE.1) CALL INTLOG(JP_DEBUG,'IGTRAN: Section 4.',JPQUIET)
C
C Square matrix so exchange elements a(i,j) and a(j,i)
C
ICOLM1 = KINCOL - 1
C
DO 420 JINCOL = 1, ICOLM1
C
IROWP1 = JINCOL + 1
C
DO 410 JINROW = IROWP1, KINROW
C
IP1 = JINCOL + (JINROW - 1) * KINCOL
IP2 = JINROW + (JINCOL - 1) * KINROW
C
ZTEMP = PMAT (IP1)
PMAT (IP1) = PMAT (IP2)
PMAT (IP2) = ZTEMP
C
410 CONTINUE
420 CONTINUE
ENDIF
C
C _______________________________________________________
C
C* Section 9. Return to calling routine. Format statements
C _______________________________________________________
C
900 CONTINUE
C
IF (KPR .GE. 1) CALL INTLOG(JP_DEBUG,'IGTRAN: Section 9.',JPQUIET)
C
RETURN
END
|