1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
|
C Copyright 1981-2007 ECMWF
C
C Licensed under the GNU Lesser General Public License which
C incorporates the terms and conditions of version 3 of the GNU
C General Public License.
C See LICENSE and gpl-3.0.txt for details.
C
LOGICAL FUNCTION JACOBIF(DATA,NM,W,ROTANG)
C
C---->
C**** JACOBIF
C
C Purpose
C -------
C
C Rotates spectral field by latitude (Fujitsu only).
C
C
C Interface
C ---------
C
C IRET = JACOBIF(DATA,NM,W,ROTANG)
C
C Input
C -----
C
C NM - Triangular truncation number of the field.
C DATA - Linear array of REAL*8s of size (NM+1)*(NM+2)
C holding the field.
C W - Work array of REAL*8s of size (NM+1)*(NM+2).
C ROTANG - Rotation angle (degrees, REAL*8)
C (degrees, negative => rotate counter-clockwise about the
C new Z-axis).
C
C
C Output
C ------
C
C DATA - The transformed field.
C
C Function returns .FALSE. if data cannot be transformed.
C
C
C Method
C ------
C
C See reference paper below.
C
C Coefficients are read into or are created in memory. A large
C amount of memory may be required; eg, for truncation NM:
C 8*(NM*(2*NM*NM + 9*NM +13)/3) bytes.
C
C Optionally, if the environment variable PP_SAVE_ROT is set, a
C file of coefficients can be created in the directory given by
C environment variable PP_ROT_DIR.
C
C The name of the file of rotation coefficients indicates the
C triangular truncation NM and the rotation angle ROTANG:
C
C $PP_ROT_DIR/rot_coefs_Tttt_nnnnnnnnn
C or $TMPDIR/rot_coefs_Tttt_nnnnnnnnn
C
C where:
C ttt = triangular truncation
C nnnnnnnnn = ROTANG*100000,
C or
C $PP_ROT_DIR/rot_coefs_Tttt_Mnnnnnnnn
C or $TMPDIR/rot_coefs_Tttt_Mnnnnnnnn
C
C where:
C ttt = triangular truncation
C nnnnnnnn = -ROTANG*100000 if ROTANG is negative.
C
C
C Externals
C ---------
C
C INTLOG - Logs messages.
C INTLOGR - Logs messages.
C GETENV - To get environment variable data.
C UNLINK - To remove a file.
C PPALLOW - Checks if the rotation coefficients can go into mrfs.
C
C
C Author
C ------
C
C J.D.Chambers ECMWF April 1999
C
C
C Reference.
C ----------
C
C "Spectral synthesis on rotated and regular grids"
C by P.Lynch and R.McGrath (Irish Meteorological Service).
C
C
C----<
C -----------------------------------------------------------------|
C
IMPLICIT NONE
C
#include "jparams.h"
#include "parim.h"
C
C Function arguments.
C
REAL*8 DATA, W
DIMENSION DATA(*), W(*)
INTEGER NM
REAL*8 ROTANG
C
C Parameters.
C
REAL*8 EPS
PARAMETER(EPS = 1.0E-10)
INTEGER JPNM_MAX, JPMAXMM, JPMEM20
PARAMETER( JPNM_MAX = 640 )
PARAMETER( JPMAXMM = 3 )
C `--> maximum number of memory slots
C used for rotation coefficients
PARAMETER( JPMEM20 = 20 )
C `--> offset in memory allocation table of
C first memory slot for rotation
C coefficients
C
C Local variables.
C
LOGICAL LFOR, LALLOW
INTEGER I, ISKIP, J, N, MM, K, IEND
INTEGER NN, M, NDEX, IMEMORY
C
REAL*4 SROTANG
REAL*8 SIMAG, S, TEMP, DROTANG
REAL*8 RAD, TANB, SINB, COSB, Q, RNKN, BNKN, SQNN
REAL*8 SQNN1, SQ2N, PKN, PK1N, RNKN1, SREAL ,RNK0, RNK1
REAL*8 INDEXR(JPNM_MAX), INDEXI(JPNM_MAX)
REAL*8 MINUS1(JPNM_MAX)
REAL*8 FACTOR(JPNM_MAX)
REAL*8 WISQR(JPNM_MAX)
REAL*8 WIB(JPNM_MAX)
REAL*8 WIR(JPNM_MAX)
REAL*8 WIDAT(2*JPNM_MAX)
C
CHARACTER*256 FILENAME
CHARACTER*40 COEFILE
DATA COEFILE/'rot_coefs_Tnnn_nnnnnnnnn'/
C
INTEGER IUNIT, IRET, ILAT, OLDLAT(3), OLDTRUN(3), IOFFSET
INTEGER IFSIZE, ICNDEX
INTEGER LOOP, NMP1TM, MAXMEM
LOGICAL LINMEM, LEXIST
C
INTEGER CURRENT, OLDEST
DATA OLDEST/1/, MAXMEM/JPMAXMM/
SAVE OLDEST, MAXMEM
C
DATA OLDLAT/3*9999999/, OLDTRUN/3*0/
DATA LINMEM/.FALSE./, LEXIST/.FALSE./
SAVE IUNIT, ILAT, OLDLAT, OLDTRUN, COEFILE, LINMEM, LEXIST
C
#ifdef POINTER_64
Cjdc INTEGER*8 ICOEFF
#endif
REAL*8 ACOEFF
DIMENSION ACOEFF(1)
POINTER ( ICOEFF, ACOEFF )
C
C Externals
C
INTEGER JCHMOD, UNLINK
LOGICAL PPALLOW
EXTERNAL JCHMOD, UNLINK, PPALLOW
C
C Statement function
C
REAL*8 A, B
LOGICAL ABSCHK
ABSCHK(A,B) = (ABS(A-B) .LT. EPS*(ABS(A) + ABS(B)))
C
C W array: 1 -> (NM+1)*(NM+2) for PMN/SQRT(2*N+1) values.
C
C RNKM values in WIR (for M>0),
C in WIB (M<0).
C Array of temporary SQRT values in WISQR, and
C temporary transformed data in WIDAT
C
C -----------------------------------------------------------------|
C* Section 1. Initialise
C -----------------------------------------------------------------|
C
100 CONTINUE
C
JACOBIF = .FALSE.
C
LALLOW = PPALLOW(NM,ROTANG)
C
CALL INTLOG(JP_DEBUG,'JACOBIF: truncation = ', NM)
SROTANG = SNGL(ROTANG)
CALL INTLOGR(JP_DEBUG,'JACOBIF: rotation angle = ', SROTANG)
C
C Exit immediately if rotation angle is zero.
C
IF (ABS(ROTANG).LT.EPS) THEN
CALL INTLOG(JP_DEBUG,'JACOBIF: No rotation necessary',JPQUIET)
JACOBIF = .TRUE.
GOTO 999
ENDIF
C
C Change to radians.
C
RAD = 180.0/PPI
DROTANG = ROTANG/RAD
TANB = TAN(DROTANG/(2.0))
SINB = SIN(DROTANG)
COSB = COS(DROTANG)
Q = SQRT(2.0)/2.0
C
ICNDEX = 0
C
C -----------------------------------------------------------------|
C* Section 2. Generate PMN/SQRT(2*N+1) values in W.
C -----------------------------------------------------------------|
C
200 CONTINUE
C
W(1) = 1.0
W(2) = COSB
C
ISKIP = NM + 1
!OCL SCALAR
DO I = 1,ISKIP
W(1+ISKIP*I) = W(1+ISKIP*I-ISKIP)*SINB*
X SQRT(DBLE(2*I-1)/DBLE(2*I))
W(1+ISKIP*I+1) = COSB*DSQRT(DBLE(2*I+1))*W(1+ISKIP*I)
ENDDO
C
!OCL SCALAR
DO I = 2,ISKIP-1
C
!OCL VECTOR
DO J = 0,ISKIP-I+1
FACTOR(J) = 1.0/DSQRT(DBLE((I+2*J)*I))
ENDDO
C
DO J = 0,ISKIP-I+1
W(I+J*ISKIP+1) = COSB*DBLE(2*I+2*J-1)
X *FACTOR(J)*W(I+J*ISKIP)
X - DSQRT(DBLE((I-1)*(I+2*J-1)))
X *FACTOR(J)*W(I+J*ISKIP-1)
ENDDO
C
ENDDO
C
MINUS1(1) = -1
!OCL SCALAR
DO I = 2, JPNM_MAX
MINUS1(I) = -MINUS1(I-1)
ENDDO
C
C -----------------------------------------------------------------|
C* Section 3. Pick up the rotation coefficients RNKM.
C -----------------------------------------------------------------|
C
300 CONTINUE
C
C Change the interpolation coefficents if the input latitude is
C not the same as the one used the last time through.
C
ILAT = NINT(ROTANG*100000)
C
DO LOOP = 1, MAXMEM
IF( ILAT.EQ.OLDLAT(LOOP).AND.(OLDTRUN(LOOP).EQ.NM) ) THEN
C
C Set flags to show the rotation coefficients are in memory
C
LINMEM = .TRUE.
LEXIST = .TRUE.
CURRENT = LOOP + JPMEM20 - 1
CALL INTLOG(JP_DEBUG,
X 'JACOBIF: Existing memory slot re-used = ', CURRENT)
CALL JMEMHAN( CURRENT, ICOEFF, IMEMORY, 1, IRET)
IF( IRET.NE.0 ) THEN
CALL INTLOG(JP_FATAL,
X 'JACOBIF: Failed to pick up existing memory pool',CURRENT)
JACOBIF = .FALSE.
GOTO 999
ENDIF
GOTO 310
ENDIF
ENDDO
C
LINMEM = .FALSE.
LEXIST = .FALSE.
CURRENT = OLDEST + JPMEM20 - 1
OLDLAT(OLDEST) = ILAT
OLDTRUN(OLDEST) = NM
OLDEST = OLDEST + 1
IF( OLDEST.GT.MAXMEM ) OLDEST = 1
CALL INTLOG(JP_DEBUG,
X 'JACOBIF: Different memory slot selected = ', CURRENT)
C
310 CONTINUE
C
IF( .NOT. LINMEM ) THEN
C
C Calculate the coefficients file size (coefficients are REAL*8)
C
IFSIZE = 8*(NM*(2*NM*NM + 9*NM +13)/3)
C
C Allocate memory for the REAL*8 coefficients
C
#ifdef REAL_8
IMEMORY = (NM*(2*NM*NM + 9*NM +13)/3)
#else
IMEMORY = 2*(NM*(2*NM*NM + 9*NM +13)/3)
#endif
C
320 CONTINUE
C
CALL JMEMHAN( CURRENT, ICOEFF, IMEMORY, 1, IRET)
IF( IRET.NE.0 ) THEN
C
C If memory allocation fails, reduce the number of slots in the
C memory pool. Exit if the pool is already down to one slot.
C
IF( MAXMEM.LT.2 ) THEN
CALL INTLOG(JP_FATAL,
X 'JACOBIF: memory allocation error',ICOEFF)
JACOBIF = .FALSE.
GOTO 999
ENDIF
MAXMEM = MAXMEM - 1
CALL INTLOG(JP_DEBUG,
X 'JACOBIF: Reduce number of memory slots to ', MAXMEM)
LINMEM = .FALSE.
LEXIST = .FALSE.
OLDEST = 1
OLDLAT(OLDEST) = ILAT
OLDTRUN(OLDEST) = NM
CURRENT = OLDEST + JPMEM20 - 1
OLDEST = OLDEST + 1
IF( OLDEST.GT.MAXMEM ) OLDEST = 1
CALL INTLOG(JP_DEBUG,
X 'JACOBIF: Different memory slot selected = ', CURRENT)
GOTO 320
ENDIF
ICNDEX = 0
C
C If the file already exists, read it into memory.
C For 'standard' rotations try PP_ROT_DIR, otherwise TMPDIR.
C
IF( LALLOW ) THEN
CALL GETENV('PP_ROT_DIR',FILENAME)
ELSE
CALL GETENV('TMPDIR',FILENAME)
ENDIF
IOFFSET = INDEX(FILENAME,' ')
IF( IOFFSET.EQ.1) THEN
CALL INTLOG(JP_WARN,
X 'JACOBIF: Unable to open rotation coefficents.',JPQUIET)
C
ELSE
C
CALL INTLOG(JP_DEBUG,
X 'JACOBIF: Existing coefficients sought in:',JPQUIET)
CALL INTLOG(JP_DEBUG,
X 'JACOBIF: '// FILENAME(1:IOFFSET-1),JPQUIET)
C
WRITE(COEFILE(12:14),'(I3.3)') NM
IF( ILAT.GE.0) THEN
WRITE(COEFILE(16:),'(I9.9)') ILAT
ELSE
COEFILE(16:) = 'M'
WRITE(COEFILE(17:),'(I8.8)') -ILAT
ENDIF
FILENAME = FILENAME(1:IOFFSET-1) // '/' // COEFILE
IOFFSET = INDEX(FILENAME,' ') - 1
C
CALL PBOPEN(IUNIT,FILENAME(1:IOFFSET),'r',IRET)
IF( IRET.EQ.0 ) THEN
C
C Let user know that a existing file has been opened
C
CALL INTLOG(JP_DEBUG,
X 'JACOBIF: Existing coefficients found in file:',JPQUIET)
CALL INTLOG(JP_DEBUG,'JACOBIF: '// COEFILE, JPQUIET)
C
C Read coefficients into memory
C
CALL PBREAD(IUNIT,ACOEFF,IFSIZE,IRET)
IF( IRET.NE.IFSIZE ) THEN
CALL INTLOG(JP_WARN,'JACOBIF: PBREAD failed.',JPQUIET)
ELSE
C
C Set flags to show the rotation coefficients are in memory
C and exist.
C
LINMEM = .TRUE.
LEXIST = .TRUE.
ENDIF
C
CALL PBCLOSE(IUNIT,IRET)
ENDIF
C
ENDIF
C
ENDIF
C
C -----------------------------------------------------------------|
C* Section 4. Generate the rotation coefficients RNKM.
C -----------------------------------------------------------------|
C
400 CONTINUE
C
C
C Generate the rotation coefficients RNKM (K = M dashed in note)
C and store in W. For K = 0 special case.
C
C PMN = W(M*(NM+1) + (N-M+1))
C
!OCL VECTOR
DO 630 N = 1,NM
RNKN = (0.5*(1.0 + COSB))**N
BNKN = (0.5*(1.0 - COSB))**N
SQNN = DSQRT(DBLE((N+1)*N))
SQNN1 = SQNN*SINB
SQ2N = DSQRT(2.0/DBLE(N))/SINB
C
C Save SQRTS.
C
!OCL VECTOR
DO MM = 0,N
WISQR(MM+1) = DSQRT(DBLE((N+MM)*(N-MM+1)))*SINB
ENDDO
C
NN = 1
C
C Generate RNKM, M = 0 to N.
C
!OCL SCALAR
DO 590 K = N,0,-1
C
C If the coefficients are not (yet) in memory, they have to
C be calculated.
C
IF( .NOT. LINMEM ) THEN
C
PKN = W(K*(NM+1) + (N-K+1))
IF (K.EQ.0) GOTO 500
C
C For K > 0, go forward from zero.
C
PK1N = W((K-1)*(NM+1) + (N-(K-1)+1))
C
C Flip sign if necessary.
C
IF (MOD(K,2).NE.0)THEN
PKN = -PKN
ELSE
PK1N = -PK1N
ENDIF
C
C Work using forward recurrence as long as coefficient
C calculated passes checks.
C
LFOR = .TRUE.
C
RNK0 = PKN
RNK1 = (-DBLE(K)*TANB*PKN + (WISQR(K+1)/SINB)*PK1N)/SQNN
C
C Recurrence starts at 2 for M = 0
C
WIR(1) = RNK0
WIR(2) = RNK1
C
!OCL SCALAR
DO MM = 1,N-1
WIR(MM+2) = (2.0*WIR(MM+1)*(DBLE(MM)*COSB-DBLE(K))
X - WISQR(MM+1)*WIR(MM)) /WISQR(MM+2)
C
C Apply check to generated coefficient to see if its
C absolute value is greater than 1. If so, have to
C switch to using backwards recurrences.
C
IF (ABS(WIR(MM+2)).GT.1.0)THEN
LFOR = .FALSE.
IEND = MM + 3
GOTO 435
ENDIF
ENDDO
C
C If forward recurrence appears OK so far,
C test last element RNKN by comparing with WIR(N+1).
C
IEND = N + 2
IF (ABSCHK(RNKN,WIR(N+1))) GOTO 445
C
C If test failed, try generating coefficients using
C backwards recurrences.
C
435 CONTINUE
C
C Work backwards from the top.
C Specify N; K is already set from the loop above.
C Stop at M = 1 (NOT 0).
C
RNKN1 = RNKN*SQ2N*(DBLE(N)*COSB-DBLE(K))
WIR(N+1) = RNKN
C
C Check whether difference is within prescribed tolerance.
C
IF (LFOR .AND. ABSCHK(RNKN1,WIR(N))) GO TO 445
WIR(N) = RNKN1
C
C For M = 0:
C
!OCL SCALAR
DO MM = N-1,1,-1
S = (2.0*WIR(MM+1)*(DBLE(MM)*COSB-DBLE(K))
X - (WISQR(MM+2)*WIR(MM+2))) / WISQR(MM+1)
C
C Accept these if forward recursion failed before
C reaching this point.
C
IF (MM+1.LT.IEND)THEN
IF (ABSCHK(S,WIR(MM))) GOTO 445
ENDIF
WIR(MM) = S
C
C If absolute value is greater than 1, give up gracefully
C
IF (ABS(S).GT.1.0) GOTO 920
C
ENDDO
C
GOTO 920
C
445 CONTINUE
C
C Now RNKM for M = 0,-N
C
C RNKM M = -1,-N
C
C Forward recurrence starts at 1 for M = 0, 2 for -1 etc.
C
LFOR = .TRUE.
C
WIB(1) = RNK0
WIB(2) = -RNK1-RNK0*DBLE(2*K)/(SQNN1)
C
!OCL SCALAR
DO MM = 1,(N-1)
WIB(MM+2) = (2.0*WIB(MM+1)*(DBLE(-MM)*COSB-DBLE(K))
X - WISQR(MM+1)*SINB*WIB(MM)) /WISQR(MM+2)
C
C Apply check to generated coefficient to see if its
C absolute value is greater than 1. If so, have to
C switch to using backwards recurrences.
C
IF (ABS(WIB(MM+2)).GT.1.0)THEN
LFOR = .FALSE.
IEND = MM + 3
GOTO 455
ENDIF
ENDDO
C
C If forward recurrence appears OK so far,
C test last element BNKN by comparing with WIB(N+1).
C
IEND = N + 1
IF (ABSCHK(BNKN,WIB(N+1))) GOTO 500
C
C If test failed, try generating coefficients using backwards
C recurrences.
C
455 CONTINUE
C
C Get R values.
C First RNKN, then next highest RNKN1.
C
RNKN1 = -BNKN*SQ2N*(DBLE(N)*COSB + DBLE(K))
C
C Work backwards from the top.
C Specify N; K is already set from the loop above.
C
C Stop at M = 1 (NOT 0).
C
WIB(N+1) = BNKN
IF (LFOR .AND. ABSCHK(RNKN1,WIB(N))) GOTO 500
WIB(N) = RNKN1
C
!OCL SCALAR
DO MM = N-1,1,-1
S = (2.0*WIB(MM+1)*(DBLE(-MM)*COSB-DBLE(K))
X - (WISQR(MM+2)*WIB(MM+2))) / WISQR(MM+1)
C
C Accept backwards generated coefficients if forward
C recursion failed before reaching this point.
C
IF ( (MM.LT.IEND ) .AND. ABSCHK(S,WIB(MM)) ) GOTO 500
WIB(MM) = S
C
C If absolute value is greater than 1, give up.
C
IF (ABS(S).GT.1.0) GOTO 910
C
ENDDO
C
C End of backwards recurrences reached with no agreed
C coefficients, give up.
C
GOTO 910
C
C -----------------------------------------------------------------|
C* Section 5. Got RNKM. Now transform spectral data.
C -----------------------------------------------------------------|
C
500 CONTINUE
C
C Put coefficients in allocated memory
C
!OCL VECTOR
DO LOOP = 1, N+1
ACOEFF(ICNDEX +LOOP) = WIR(LOOP)
ACOEFF(ICNDEX+N+1+LOOP) = WIB(LOOP)
ENDDO
C
ENDIF
C
C Coefficients are in memory
C
PKN = W(K*(NM+1) + (N-K+1))
PK1N = W((K-1)*(NM+1) + (N-(K-1)+1))
C
C Flip sign if necessary.
C
IF (MOD(K,2).NE.0)THEN
PKN = -PKN
ELSE
PK1N = -PK1N
ENDIF
C
!OCL VECTOR
DO LOOP = 1, N+1
WIR(LOOP) = ACOEFF(ICNDEX +LOOP)
WIB(LOOP) = ACOEFF(ICNDEX+N+1+LOOP)
ENDDO
ICNDEX = ICNDEX + 2*(N+1)
C
C
C Special case when K=0.
C
IF( K.EQ.0) THEN
C
SREAL = DATA(2*(N+1)-1)*PKN
SIMAG = 0.0
!OCL VECTOR
DO M = 1,N
SREAL = SREAL
X + 2.0*DATA(2*((NM+1)*M-((M-1)*M)/2+1+N-M)-1)
X * W((NM+1)*M+(N-M+1))
ENDDO
C
NDEX = 1+N
WIDAT(NN) = SREAL
WIDAT(NN+1) = SIMAG
NN = NN + 2
C
ELSE
C
SREAL = DATA(2*(N+1)-1)*PKN
SIMAG = 0.0
!OCL VECTOR
DO M = 1,N
INDEXR(M) = 2*((NM+1)*M-((M-1)*M)/2+1+N-M)-1
ENDDO
!OCL VECTOR
DO M = 1,N
INDEXI(M) = INDEXR(M) + 1
ENDDO
C
!OCL VECTOR
DO M = 1,N
SREAL = SREAL +
X DATA(INDEXR(M))
X * (WIR(M+1)+WIB(M+1)*MINUS1(M))
SIMAG = SIMAG -
X DATA(INDEXI(M))
X * (-WIR(M+1)+WIB(M+1)*MINUS1(M))
ENDDO
C
NDEX = (NM+1)*K - ((K-1)*K)/2+1+N-K
WIDAT(NN) = SREAL
WIDAT(NN+1) = SIMAG
NN = NN + 2
ENDIF
C
C Update RNKN at both ends of the forward and backward
C recurrences.
C
TEMP = DSQRT(DBLE(N+K)/DBLE(N-K+1))
RNKN = RNKN*TEMP*SINB/(1+COSB)
BNKN = -BNKN*TEMP*(1+COSB)/SINB
C
C End of inner loop.
C
590 CONTINUE
C
C -----------------------------------------------------------------|
C* Section 6. Now place the values of the rotated spectral
C coefficients in DATA.
C -----------------------------------------------------------------|
C
600 CONTINUE
C
NN = 1
!OCL VECTOR
DO K = N,0,-1
NDEX = (NM+1)*K - ((K-1)*K)/2+1+N-K
DATA(2*NDEX-1) = WIDAT(NN)
DATA(2*NDEX) = WIDAT(NN+1)
NN = NN + 2
C
ENDDO
C
C End of outer loop.
C
630 CONTINUE
C
C -----------------------------------------------------------------|
C* Section 9. Return.
C -----------------------------------------------------------------|
C
900 CONTINUE
C
LINMEM = .TRUE.
C
IF( .NOT. LEXIST ) THEN
C
C If the environment variable PP_SAVE_ROT is set, save the
C rotation coefficients in a file.
C 'Standard' rotations go into PP_ROT_DIR, others into TMPDIR.
C
LEXIST = .TRUE.
CALL GETENV('PP_SAVE_ROT',FILENAME)
IOFFSET = INDEX(FILENAME,' ')
IF( IOFFSET.GT.1 ) THEN
IF( LALLOW ) THEN
CALL GETENV('PP_ROT_DIR',FILENAME)
ELSE
CALL GETENV('TMPDIR',FILENAME)
ENDIF
IOFFSET = INDEX(FILENAME,' ')
IF( IOFFSET.EQ.1) THEN
CALL INTLOG(JP_WARN,
X 'JACOBIF: Unable to save rotation coefficents.',JPQUIET)
C
ELSE
C
C Let user know that a new file is being created.
C
CALL INTLOG(JP_DEBUG,
X 'JACOBIF: Creating new coefficients in directory',JPQUIET)
CALL INTLOG(JP_DEBUG,
X 'JACOBIF: '// FILENAME(1:IOFFSET-1),JPQUIET)
C
WRITE(COEFILE(12:14),'(I3.3)') NM
IF( ILAT.GE.0) THEN
WRITE(COEFILE(16:),'(I9.9)') ILAT
ELSE
COEFILE(16:) = 'M'
WRITE(COEFILE(17:),'(I8.8)') -ILAT
ENDIF
FILENAME = FILENAME(1:IOFFSET-1) // '/' // COEFILE
IOFFSET = INDEX(FILENAME,' ')
C
CALL PBOPEN(IUNIT,FILENAME(1:IOFFSET-1),'w',IRET)
IF( IRET.NE.0 ) THEN
CALL INTLOG(JP_WARN,
X 'JACOBIF: PBOPEN for write failed',JPQUIET)
GOTO 995
ENDIF
C
CALL INTLOG(JP_DEBUG,
X 'JACOBIF: New coefficients filename:',JPQUIET)
CALL INTLOG(JP_DEBUG,'JACOBIF: '// COEFILE, JPQUIET)
C
C Change access mode to 'read only' for all users.
C
IRET = JCHMOD(FILENAME(1:IOFFSET-1),'0444')
IF( IRET.NE.0 )
X CALL INTLOG(JP_WARN,'JACOBIF: JCHMOD error.',IRET)
C
C Write coefficients to file
C
CALL PBWRITE(IUNIT,ACOEFF,IFSIZE,IRET)
IF( IRET.NE.IFSIZE ) THEN
CALL INTLOG(JP_FATAL,'JACOBIF: PBWRITE failed.',JPQUIET)
IRET = UNLINK(FILENAME(1:IOFFSET-1))
IF( IRET.NE.0 )
X CALL INTLOG(JP_FATAL,'JACOBIF: UNLINK failed',JPQUIET)
CALL PBCLOSE(IUNIT,IRET)
JACOBIF = .FALSE.
GOTO 999
ENDIF
CALL PBCLOSE(IUNIT,IRET)
LINMEM = .TRUE.
ENDIF
ENDIF
ENDIF
C
995 CONTINUE
C
JACOBIF = .TRUE.
C
999 CONTINUE
RETURN
C
C Failure to converge with M < 0.
C
910 CONTINUE
CALL INTLOG(JP_FATAL,'JACOBIF: Fail to converge M < 0', JPQUIET)
JACOBIF = .FALSE.
GOTO 999
C
C Failure to converge with M > 0.
C
920 CONTINUE
CALL INTLOG(JP_FATAL,'JACOBIF: Fail to converge M > 0', JPQUIET)
JACOBIF = .FALSE.
GOTO 999
END
|