File: intuvu.F

package info (click to toggle)
emoslib 2%3A4.4.5-2
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 359,232 kB
  • ctags: 13,125
  • sloc: fortran: 93,166; ansic: 27,958; sh: 7,500; f90: 5,209; perl: 604; cpp: 305; makefile: 78; python: 53
file content (895 lines) | stat: -rw-r--r-- 25,418 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
C Copyright 1981-2016 ECMWF.
C
C This software is licensed under the terms of the Apache Licence
C Version 2.0 which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
C
C In applying this licence, ECMWF does not waive the privileges and immunities
C granted to it by virtue of its status as an intergovernmental organisation
C nor does it submit to any jurisdiction.
C

      INTEGER FUNCTION INTUVU( PVYIN, PDVIN, INLEN,
     X                         PUOUT, PVOUT, OUTLEN)
C
C---->
C**** INTUVU
C
C     Purpose
C     -------
C
C     Interpolate unpacked input vorticity and divergence field to
C     unpacked U and V fields.
C
C
C     Interface
C     ---------
C
C     IERR = INTUVU( PVYIN, PDVIN, INLEN, PUOUT,PVOUT,OUTLEN)
C
C     Input
C     -----
C
C     PVYIN  - Input vorticity field  (unpacked array).
C     PDVIN  - Input divergence field (unpacked array).
C     INLEN  - Input field length (words).
C
C
C     Output
C     ------
C
C     PUOUT  - Output U field (unpacked array).
C     PVOUT  - Output V field (unpacked array).
C     OUTLEN - Output field length (words).
C
C
C     Method
C     ------
C
C     Convert spectral vorticity/divergence to spectral U/V and then
C     interpolate U and V to output fields.
C
C
C     Externals
C     ---------
C
C     JVOD2UV - Converts spectral vorticity/divergence to spectral U/V.
C     JMEMHAN - Allocate scratch memory.
C     INTFAU  - Prepare to interpolate unpacked input field.
C     INTFBU  - Interpolate unpacked input field.
C     INTLOG  - Log error message.
C
C
C     Author
C     ------
C
C     J.D.Chambers     ECMWF     Feb 1995
C
C     J.D.Chambers     ECMWF        Feb 1997
C     Allow for 64-bit pointers
C
C----<
C
      IMPLICIT NONE
C
#include "parim.h"
#include "nifld.common"
#include "nofld.common"
#include "grfixed.h"
#include "intf.h"
#include "current.h"
C
C     Parameters
C
      INTEGER JPROUTINE, JPALLOC, JPSCR3, JPSCR5
      PARAMETER (JPROUTINE = 27000)
      PARAMETER (JPALLOC = 1)
      PARAMETER (JPSCR3 = 3)
      PARAMETER (JPSCR5 = 5)
C
C     Function arguments
C
      INTEGER INLEN, OUTLEN
      REAL PVYIN(INLEN), PDVIN(INLEN), PUOUT(*), PVOUT(*)
C
C     Local variables
C
      CHARACTER*1 HOLDTYP
      CHARACTER*1 HTYPE
      INTEGER IDIVOFF
      INTEGER IERR
      INTEGER IOHOLD(4)
      INTEGER IPVORT
      INTEGER ISIZE
      INTEGER ISZUV
      INTEGER KK
      INTEGER KPR
      INTEGER KPTS(JPGTRUNC*2)
      INTEGER LOOP
      INTEGER MTRUNC
      INTEGER NCOUNT
      INTEGER NGAUSS
      INTEGER NLAT
      INTEGER NLON
      INTEGER NOLD
      INTEGER NTROLD
      INTEGER NTROLD2
      INTEGER NTRUNC
      INTEGER NUMPTS
      INTEGER NUVFLAG
      LOGICAL LFRAME
      LOGICAL LOLDWIND
      LOGICAL LSFCUVI
      LOGICAL LSPCUVI
      LOGICAL LSPECUV
      LOGICAL LSTYLE
      REAL AREA(4)
      REAL EAST
      REAL EW
      REAL GLATS(JPGTRUNC*2)
      REAL GRID(2)
      REAL NORTH
      REAL NS
      REAL OLDGRID(2)
      REAL POLE(2)
      REAL SOUTH
      REAL WEST
C
      LOGICAL LFIRST, LNEWUV
      CHARACTER*3 EXTRA
      DATA LFIRST/.TRUE./, LNEWUV/.TRUE./, EXTRA/'NO '/
      SAVE LFIRST, LNEWUV
C
      DATA NTROLD/-1/, NTROLD2/-1/
      SAVE NTROLD, NTROLD2
      INTEGER IP_U, IP_V

      REAL RGGRID, SWORK
      POINTER (IRGGRID, RGGRID(1) )
      POINTER (ISWORK, SWORK(1) )
#ifndef _CRAYFTN
#ifdef POINTER_64
      INTEGER*8 IZNFLDO
#endif
#endif
      REAL ZNFLDO
      POINTER ( IZNFLDO, ZNFLDO )
      DIMENSION ZNFLDO( 1 )
#ifndef _CRAYFTN
#ifdef POINTER_64
      INTEGER*8 IUV
#endif
#endif
      REAL UV
      POINTER ( IUV, UV )
      DIMENSION UV( 1 )
C
C     Externals
C
      INTEGER INTFAU, INTFBU, AURESOL, DSSAREA, FIXAREA
      INTEGER HIRLAMW, HSH2GG
      INTEGER HRG2GGW, HLL2LLW
      EXTERNAL INTFAU, INTFBU, AURESOL, DSSAREA, FIXAREA
      EXTERNAL HIRLAMW, HSH2GG
      EXTERNAL HRG2GGW, HLL2LLW
C
C     -----------------------------------------------------------------|
C*    Section 1.   Initialise
C     -----------------------------------------------------------------|
C
  100 CONTINUE
      IERR     = 0
      KPR      = 0
      LOLDWIND = .FALSE.
      INTUVU   = 0
C
C
C     Save output area definitions
C
      DO 110 LOOP = 1, 4
        IOHOLD(LOOP) = NOAREA(LOOP)
  110 CONTINUE

      LFRAME = LNOFRAME.AND.
     X         ((NOREPR.EQ.JPREGULAR).OR.(NOREPR.EQ.JPGAUSSIAN).OR.
     X          (NOREPR.EQ.JPREGROT ).OR.(NOREPR.EQ.JPFGGROT  ) )

      IF( LFIRST ) THEN
        CALL GETENV('IGNORE_UV_EXTRA_MODE', EXTRA)
        IF((EXTRA(1:1).EQ.'Y').OR.(EXTRA(1:1).EQ.'y')) LNEWUV = .FALSE.
        IF( LNEWUV ) THEN
          CALL INTLOG(JP_DEBUG,
     X      'INTUVU: IGNORE_UV_EXTRA_MODE not turned on',JPQUIET)
        ELSE
          CALL INTLOG(JP_DEBUG,
     X      'INTUVU: IGNORE_UV_EXTRA_MODE turned on',JPQUIET)
        ENDIF
        LFIRST = .FALSE.
      ENDIF
C
      NOLD = NIRESO
C
      LSPECUV = (NOREPR.EQ.JPSPHERE).OR.(NOREPR.EQ.JPSPHROT)
      LSPCUVI = (NIREPR.EQ.JPSPHERE).OR.(NIREPR.EQ.JPSPHROT)
      LSFCUVI = (.NOT.LSPCUVI).AND.LNOROTA

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
cs    Regular Gaussian has to be set here
      IF( NOREPR.EQ.JPNOTYPE ) THEN
        IF( (NOGAUSO.NE.NOGAUSS).OR.(HOGAUST.NE.'F') ) THEN
          HTYPE = 'F'
          CALL JGETGG(NOGAUSS,HTYPE,ROGAUSS,NOLPTS,IERR)
          IF( IERR.NE.0 ) THEN
            CALL INTLOG(JP_ERROR,
     X        'INTUVU: JGETGG failed, NOGAUSS = ',NOGAUSS)
            INTUVU = IERR
            GOTO 900
          ENDIF
          NOGAUSO = NOGAUSS
          HOGAUST = HTYPE
        ENDIF
        NOREPR = JPGAUSSIAN
      ENDIF
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C     -----------------------------------------------------------------|
C*    Section 2. Convert spectral vorticity/divergence to spectral U/V
C     -----------------------------------------------------------------|
C
  200 CONTINUE
C
      IF( LSPECUV ) THEN
C
C       Spectral U and V for Tn are to be generated from vorticity
C       and divergence spectral T(n-1)
C
        IF( LARESOL.AND.LNEWUV ) THEN
          IF( (NOGRID(1).NE.0).AND.(NOGRID(2).NE.0) ) THEN
            EW = FLOAT(NOGRID(1))/PPMULT
            NS = FLOAT(NOGRID(2))/PPMULT
            NTRUNC = AURESOL(NS,EW) - 1
          ELSE IF( NOGAUSS.NE.0 ) THEN
            EW = 90.0/FLOAT(NOGAUSS)
            NS = EW
            NTRUNC = AURESOL(NS,EW) - 1
          ELSE IF( LNORESO ) THEN
            NTRUNC = NORESO - 1
          ELSE
            NTRUNC = NIRESO - 1
          ENDIF
          IF( NTRUNC.GT.(NIRESO-1) ) NTRUNC = NIRESO - 1
C
        ELSE IF( LNORESO ) THEN
          NTRUNC = NORESO - 1
        ELSE
          NTRUNC = NIRESO - 1
        ENDIF
C
        IF( LNEWUV ) THEN
          MTRUNC = NTRUNC + 1
        ELSE
          NTRUNC = NTRUNC + 1
          MTRUNC = NTRUNC
        ENDIF
C
C     -----------------------------------------------------------------|
C       Use old-style processing if IGNORE_UV_EXTRA_MODE = Y
C     -----------------------------------------------------------------|
C
        IF( .NOT.LNEWUV ) THEN
C
          CALL INTLOG(JP_DEBUG,'INTUVU: vo/div truncation = ', NIRESO)
C
C         Get scratch memory for U and V spectral fields.
C         U and V memory areas are adjacent.
C
          ISZUV = (NIRESO+1)*(NIRESO+2)
          IP_U = 1
          IP_V = 1 + ISZUV
          CALL JMEMHAN( JPSCR3, IUV, ISZUV*2, JPALLOC, IERR)
          IF ( IERR .NE. 0 ) THEN
            CALL INTLOG(JP_ERROR,'INTUVU: Memory allocn fail',JPQUIET)
            INTUVU = IERR
            GOTO 900
          ENDIF
C
C         Generate U and V with same truncation as input fields.
C
          CALL INTLOG(JP_DEBUG,
     X      'INTUVU: Make intermediate U/V with truncation = ', NIRESO)
C
          CALL JVOD2UV(PVYIN,PDVIN,NIRESO,UV(IP_U),UV(IP_V),NIRESO)
C
C         Is the output a truncated spectral field?
C
          IF( LNORESO ) THEN
C
            CALL INTLOG(JP_DEBUG,
     X        'INTUVU: Produce spectral output with truncation',NORESO)
C
            ISIZE = (NORESO+1)*(NORESO+2)
            CALL JMEMHAN( JPSCR5, IZNFLDO, ISIZE, JPALLOC, IERR)
            IF( IERR.NE.0 ) THEN
              CALL INTLOG(JP_FATAL,'INTUVU: Get scratch fail',JPQUIET)
              INTUVU = JPROUTINE + 2
              GOTO 900
            ENDIF
C
            CALL SH2SH( UV(IP_U), NIRESO, ZNFLDO, NORESO )
            DO LOOP = 1, ISIZE
              PUOUT(LOOP) = ZNFLDO(LOOP)
            ENDDO
C
            CALL SH2SH( UV(IP_V), NIRESO, ZNFLDO, NORESO )
            DO LOOP = 1, ISIZE
              PVOUT(LOOP) = ZNFLDO(LOOP)
            ENDDO
C
            NIRESO = NORESO
C
            OUTLEN = ISZUV

            GOTO 900
C
          ENDIF
C
C     -----------------------------------------------------------------|
C       Use new-style processing if IGNORE_UV_EXTRA_MODE not set
C     -----------------------------------------------------------------|
C
        ELSE
C
          CALL INTLOG(JP_DEBUG,'INTUVU: vo/div truncation = ', NTRUNC)
          CALL INTLOG(JP_DEBUG,'INTUVU: U/V truncation    = ', MTRUNC)
C
C         Truncate vorticity and divergence to correspond to U/V
C
          ISIZE =  (MTRUNC+1)*(MTRUNC+2)
          CALL JMEMHAN( JPSCR5, IZNFLDO, ISIZE*2, JPALLOC, IERR)
          IF( IERR.NE.0 ) THEN
            CALL INTLOG(JP_ERROR,
     X        'INTUVU: Scratch memory type 5 allocn failed.',JPQUIET)
            INTUVU = JPROUTINE + 2
            GOTO 900
          ENDIF
C
          IPVORT = 1
          CALL SH2SH( PVYIN, NIRESO, ZNFLDO, NTRUNC )
C
          IDIVOFF = 1 + (NTRUNC+1)*(NTRUNC+2)
          CALL SH2SH( PDVIN, NIRESO, ZNFLDO(IDIVOFF), NTRUNC )
C
C         Get scratch memory for U and V spectral fields.
C         U and V memory areas are adjacent.
C
          ISZUV = (MTRUNC+1)*(MTRUNC+2)
          IP_U = 1
          IP_V = 1 + ISZUV
C
          ISIZE = ISZUV*2
          CALL JMEMHAN( JPSCR3, IUV, ISIZE, JPALLOC, IERR)
          IF ( IERR .NE. 0 ) THEN
          CALL INTLOG(JP_ERROR,
     X      'INTUVU: Scratch memory type 3 allocation failed.',JPQUIET)
          INTUVU = IERR
          GOTO 900
        ENDIF
C
C       Generate U and V spectral fields
C
          CALL JVOD2UV(ZNFLDO(IPVORT),ZNFLDO(IDIVOFF),NTRUNC,
     X                 UV(IP_U),UV(IP_V),MTRUNC)
C
          DO LOOP = 1, ISZUV
            PUOUT(LOOP) = UV(LOOP)
            PVOUT(LOOP) = UV(LOOP+ISZUV)
          ENDDO
C
C
          OUTLEN = ISZUV
cs  added in case of packing after conversion
          NORESO = MTRUNC
C
          GOTO 900
C
        ENDIF
C
      ENDIF
C
C     -----------------------------------------------------------------|
C*    Section 3.   Generate grid point GRIB format U and V fields.
C     -----------------------------------------------------------------|
C
  300 CONTINUE
C
cs    this is for merging with grib_api
      LUVCOMP = .FALSE.
C     Spectral U and V for Tn are to be generated from vorticity
C     and divergence spectral T(n-1)
C
C     See whether or not the 'autoresol' flag is set.
C     If not, use the input truncation.
C
      IF( LARESOL ) THEN
        IF( (NOREPR.EQ.JPREGULAR).OR.(NOREPR.EQ.JPREGROT) ) THEN
          EW = FLOAT(NOGRID(1))/PPMULT
          NS = FLOAT(NOGRID(2))/PPMULT
        ELSE
          EW = 90.0/FLOAT(NOGAUSS)
          NS = EW
        ENDIF
        NTRUNC = AURESOL(EW,NS)
        IF( NTRUNC.NE.NTROLD ) THEN
          NTROLD = NTRUNC
          CALL INTLOG(JP_WARN,
     X      'INTUVU: Resolution automatically set to ', NTRUNC)
        ENDIF
      ELSE IF( LNORESO ) THEN
        NTRUNC = NORESO
      ELSE
        NTRUNC = NIRESO
      ENDIF
C
C     Check whether the output resolution is greater than the input
C
      IF( NTRUNC.GT.NIRESO ) THEN
C
C       Issue warning if the output resolution was user-supplied
C
        IF( .NOT.LARESOL ) THEN
C
C         Revert to the input truncation
C
          IF( NIRESO.NE.NTROLD2 ) THEN
            CALL INTLOG(JP_WARN,
     X        'INTUVU: spectral -> grid point interpolation',JPQUIET)
            CALL INTLOG(JP_WARN,
     X        'INTUVU: User supplied resolution = ',NTRUNC)
            CALL INTLOG(JP_WARN,
     X        'INTUVU: Input field resolution   = ',NIRESO)
            CALL INTLOG(JP_WARN,
     X        'INTUVU: User supplied resolution ignored',JPQUIET)
            CALL INTLOG(JP_WARN,
     X        'INTUVU: Input field resolution has been used',JPQUIET)
            NTROLD2 = NIRESO
          ENDIF
          NTRUNC = NIRESO
C
        ELSE
C
C         Revert to the input truncation
C
          NTRUNC = NIRESO
          IF( NTRUNC.NE.NTROLD2 ) THEN
            NTROLD2 = NTRUNC
            CALL INTLOG(JP_WARN,
     X        'INTUVU: Automatic resolution selectn too high',JPQUIET)
            CALL INTLOG(JP_WARN,
     X        'INTUVU: Resolution reset to input resolution: ',NTRUNC)
          ENDIF
C
        ENDIF
      ENDIF
C
C     IF extra mode is in use, adjust the calculated truncation.
C
      MTRUNC = NTRUNC
      IF( LNEWUV ) NTRUNC = MTRUNC - 1
C
      CALL INTLOG(JP_DEBUG,'INTUVU: vo/div truncation = ', NTRUNC)
      CALL INTLOG(JP_DEBUG,'INTUVU: U/V truncation    = ', MTRUNC)
C
      ISIZE = (MTRUNC+1)*(MTRUNC+2)
      CALL JMEMHAN( JPSCR5, IZNFLDO, ISIZE*2, JPALLOC, IERR)
      IF( IERR.NE.0 ) THEN
        CALL INTLOG(JP_FATAL,
     X    'INTUVU: Get scratch space failed',JPQUIET)
        INTUVU = JPROUTINE + 3
        GOTO 900
      ENDIF
C
C     Adjust the vorticity and divergence by one wave number before
C     conversion to U and V
C
      IPVORT = 1
      IDIVOFF = 1 + (NTRUNC+1)*(NTRUNC+2)
C
      CALL SH2SH( PVYIN, NIRESO, ZNFLDO, NTRUNC )
C
      CALL SH2SH( PDVIN, NIRESO, ZNFLDO(IDIVOFF), NTRUNC )
C
C     Get scratch memory for U and V spectral fields.
C     U and V memory areas are adjacent.
C
      ISZUV = (MTRUNC+1)*(MTRUNC+2)
      IP_U  = 1
      IP_V  = IP_U + ISZUV
C
      ISIZE = ISZUV*2
      CALL JMEMHAN( JPSCR3, IUV, ISIZE, JPALLOC, IERR)
      IF( IERR.NE.0 ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: Scratch memory type 3 allocation failed.',JPQUIET)
        INTUVU = IERR
        GOTO 900
      ENDIF
C
C     Generate U and V spectral fields
C
      CALL JVOD2UV(ZNFLDO(IPVORT),ZNFLDO(IDIVOFF),NTRUNC,
     X             UV(IP_U),UV(IP_V),MTRUNC)
C
      NIRESO = MTRUNC
C
C
      LSTYLE = LNOSTYLE.AND.
     X         (NOSTYLE.EQ.JPSDISM).AND.
     X         (NOREPR.EQ.JPREGULAR)
C
        IF( LSTYLE ) THEN
            EW    = NOGRID(1) / PPMULT
            NS    = NOGRID(2) / PPMULT
            NORTH = REAL(NOAREA(1)) / PPMULT
            WEST  = REAL(NOAREA(2)) / PPMULT
            SOUTH = REAL(NOAREA(3)) / PPMULT
            EAST  = REAL(NOAREA(4)) / PPMULT
C
            IERR = DSSAREA( EW, NS, NORTH, WEST, SOUTH, EAST)
            IF( IERR.NE.0 ) THEN
              CALL INTLOG(JP_ERROR,'INTUVU: DSSAREA failed:',IERR)
              INTUVU = JPROUTINE + 3
              GOTO 900
            ENDIF
C
            NOAREA(1) = NINT(NORTH * PPMULT)
            NOAREA(2) = NINT(WEST  * PPMULT)
            NOAREA(3) = NINT(SOUTH * PPMULT)
            NOAREA(4) = NINT(EAST  * PPMULT)
         ELSE
C           Fixup area definition to correspond to grid definitions
             IERR = FIXAREA()
             IF ( IERR .NE. 0 ) THEN
               CALL INTLOG(JP_ERROR,
     X           'INTUVU: Fixup area definition failed.',JPQUIET)
               INTUVU = IERR
               GOTO 900
             ENDIF
         ENDIF
      DO KK = 1,4
          NOAAPI(KK) = NOAREA(KK)
      ENDDO

      NIFORM = 0
      NIPARAM = JP_U
      LWIND = .TRUE.
      LOLDWIND = LWINDSET
      LWINDSET = .TRUE.
C
      IF(LSFCUVI)   GOTO 850
      IF( LNOROTA ) GOTO 700

C     -----------------------------------------------------------------|
C*    Section 4.   Interpolate U field.
C     -----------------------------------------------------------------|
C
  400 CONTINUE
C
      IERR = INTFAU( UV(IP_U), ISZUV, PUOUT, OUTLEN)
      IF ( IERR .NE. 0 ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: Prepare to interpolate failed.',JPQUIET)
        INTUVU = IERR
        GOTO 900
      ENDIF
C
      IERR = INTFBU( UV(IP_U), ISZUV, PUOUT, OUTLEN)
C
      IF ( IERR .NE. 0 ) THEN
        CALL INTLOG(JP_ERROR,'INTUVU: Interpolation failed.',JPQUIET)
        INTUVU = IERR
        GOTO 900
      ENDIF
C
C     -----------------------------------------------------------------|
C*    Section 5.   Interpolate V field.
C     -----------------------------------------------------------------|
C
  500 CONTINUE
C
      NIPARAM = JP_V
      IERR = INTFAU( UV(IP_V), ISZUV, PVOUT, OUTLEN)
      IF ( IERR .NE. 0 ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: Prepare to interpolate failed.',JPQUIET)
        INTUVU = IERR
        GOTO 900
      ENDIF
C
      IERR = INTFBU( UV(IP_V), ISZUV, PVOUT, OUTLEN)
C
      IF ( IERR .NE. 0 ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: INTFBU interpolate failed.',JPQUIET)
        INTUVU = IERR
        GOTO 900
      ENDIF

cs      GOTO 900
       GOTO 890
C
C     -----------------------------------------------------------------|
C*    Section 6.  Initialise spectral to grid-point with rotation
C     -----------------------------------------------------------------|
C
  700 CONTINUE
      IF( .NOT.LUSEHIR ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: Unable to rotate spectral U or V:',JPQUIET)
        INTUVU  = JPROUTINE + 6
        GOTO 900
      ENDIF
C
      IF( (NOREPR.NE.JPREGROT).AND.(NOREPR.NE.JPREGULAR) ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: For U/V, only regular lat/long',JPQUIET)
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: output rotated grids allowed',JPQUIET)
        INTUVU  = JPROUTINE + 6
        GOTO 900
      ENDIF
C
cs this is for merging with grib_api
      LUVCOMP = .TRUE.
      CALL INTLOG(JP_DEBUG,'INTUVU: Rotate the U & V fields',JPQUIET)
      CALL INTLOG(JP_DEBUG,'INTUVU: South pole lat  ',NOROTA(1))
      CALL INTLOG(JP_DEBUG,'INTUVU: South pole long ',NOROTA(2))
C
C     Fill area limits (handles case when default 0/0/0/0 given)
C
cssssssssss
cs      IERR = FIXAREA()
cs      IF( IERR.NE.0 ) THEN
cs        CALL INTLOG(JP_ERROR,'INTUVU: area fixup failed',JPQUIET)
cs        INTUVU = JPROUTINE + 6
cs        GOTO 900
cs      ENDIF
C
      AREA(1) = REAL(NOAREA(1))/PPMULT
      AREA(2) = REAL(NOAREA(2))/PPMULT
      AREA(3) = REAL(NOAREA(3))/PPMULT
      AREA(4) = REAL(NOAREA(4))/PPMULT
C
      GRID(1) = REAL(NOGRID(1))/PPMULT
      GRID(2) = REAL(NOGRID(2))/PPMULT
C
      POLE(1) = REAL(NOROTA(1))/PPMULT
      POLE(2) = REAL(NOROTA(2))/PPMULT
C
C     -----------------------------------------------------------------|
C*    Section 7.   Convert spectral to suitable global reduced gaussian
C     -----------------------------------------------------------------|
C
  800 CONTINUE
C
      NTRUNC = NIRESO
      NGAUSS = 0
      HTYPE  = ''
      NS = 0.
      EW = 0.
      IERR = HSH2GG(NS,EW,NTRUNC,NGAUSS,HTYPE,KPTS,GLATS,ISIZE)
      IF( IERR.NE.0 ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: problem getting data for reduced grid',NTRUNC)
        INTUVU = JPROUTINE + 7
        GOTO 900
      ENDIF
      NCOUNT = ISIZE
C
C     Dynamically allocate memory for global reduced gaussian grid
C
      CALL JMEMHAN( 18, IRGGRID, (NCOUNT*2), 1, IERR)
      IF( IERR.NE.0 ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: memory alloc for reduced grid fail',JPQUIET)
        INTUVU = JPROUTINE + 7
        GOTO 900
      ENDIF
C
C     Set flag to show field is a wind component
C
      NUVFLAG = 1
C
C     Create the reduced gaussian grid
C
      HOLDTYP = HOGAUST
      WEST = 0.0
      EAST = 360.0 - (360.0/FLOAT(KPTS(NGAUSS)))
C
C     U component
C
      CALL JAGGGP(UV(IP_U),NTRUNC,GLATS(1),GLATS(NGAUSS*2),WEST,
     X            EAST,NGAUSS,HTYPE,KPTS,RGGRID,NUVFLAG,IERR)
      IF( IERR.NE.0 ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: spectral to reduced gaussian failed',JPQUIET)
        INTUVU = JPROUTINE + 7
        GOTO 900
      ENDIF
C
      HOGAUST = HOLDTYP
C
C     V component
C
      CALL JAGGGP(UV(IP_V),NTRUNC,GLATS(1),GLATS(NGAUSS*2),WEST,
     X            EAST,NGAUSS,HTYPE,KPTS,RGGRID(1+NCOUNT),NUVFLAG,IERR)
      IF( IERR.NE.0 ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: spectral to reduced gaussian failed',JPQUIET)
        INTUVU = JPROUTINE + 7
        GOTO 900
      ENDIF

      HOGAUST = HOLDTYP


C     -----------------------------------------------------------------|
C*    Section 8.   Rotate using 12-point horizontal interpolation
C     -----------------------------------------------------------------|
C
  810 CONTINUE
C
C     Dynamically allocate memory for rotated lat/long grid
C
      NLON = 1 + NINT(FLOAT(NOAREA(JPEAST)  - NOAREA(JPWEST)) /
     X       NOGRID(JPWESTEP))
      NLAT = 1 + NINT(FLOAT(NOAREA(JPNORTH) - NOAREA(JPSOUTH)) /
     X       NOGRID(JPNSSTEP))
C
      NUMPTS = NLON * NLAT
      ISIZE  = NUMPTS * 2
      CALL JMEMHAN( 11, ISWORK, ISIZE, 1, IERR)
      IF( IERR.NE.0 ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: memory alloc for lat/long grid fail',JPQUIET)
        INTUVU = JPROUTINE + 8
        GOTO 900
      ENDIF
C
      IERR = HIRLAMW(LO12PT,RGGRID,RGGRID(1+NCOUNT),NCOUNT,NGAUSS,HTYPE,
     X  AREA,POLE,GRID,SWORK,SWORK(1+NUMPTS),NUMPTS,NLON,NLAT)
C
      IF( IERR.NE.0 ) THEN
        CALL INTLOG(JP_ERROR,
     X    'INTUVU: HIRLAMW rotation failed',JPQUIET)
        INTUVU = JPROUTINE + 8
        GOTO 900
      ENDIF
c
      DO LOOP = 1, NUMPTS
          PUOUT(LOOP) = SWORK(LOOP)
          PVOUT(LOOP) = SWORK(LOOP+NUMPTS)
      ENDDO

      OUTLEN = NUMPTS

cs       GOTO 900
       GOTO 890
c     -----------------------------------------------------------------|
C*    Section 8.1   Grid to rotated grid  point
C     -----------------------------------------------------------------|
  850 CONTINUE
C*    8.1a   Generate interpolated lat/long U and V fields.
C     -----------------------------------------------------------------|
C
cs this is for merging with grib_api
      LUVCOMP = .TRUE.
C
      IF( (NOREPR.EQ.JPREGULAR).OR.(NOREPR.EQ.JPREGROT) ) THEN
C
C       Dynamically allocate scrath space for rotated lat/long grid
C
        NLON = 1 + NINT(FLOAT(NOAREA(JPEAST)  - NOAREA(JPWEST)) /
     X         NOGRID(JPWESTEP))
        NLAT = 1 + NINT(FLOAT(NOAREA(JPNORTH) - NOAREA(JPSOUTH)) /
     X         NOGRID(JPNSSTEP))
C
        NOWE = NLON
        NONS = NLAT
        OUTLEN = NLON * NLAT
C
C       Rotate reduced gaussian to lat/long
C
        IF( (NIREPR.EQ.JPGAUSSIAN).OR.(NIREPR.EQ.JPQUASI) ) THEN
        CALL INTLOG(JP_DEBUG,
     X    'INTUVU: Rotate reduced gaussian to lat/long',JPQUIET)
          IERR = HIRLAMW(LO12PT,
     X                   PVYIN,PDVIN,INLEN,
     X                   NOGAUSS,HTYPE,AREA,POLE,GRID,
     X                   PUOUT,PVOUT,OUTLEN,NLON,NLAT)
          IF( IERR.NE.0 ) THEN
            CALL INTLOG(JP_ERROR,
     X        'INTUVU: HIRLAMW rotation failed',JPQUIET)
            INTUVU = JPROUTINE + 8
            GOTO 900
          ENDIF
C
C       Rotate lat/long to lat/long
C
        ELSE
        CALL INTLOG(JP_DEBUG,
     X    'INTUVU: Rotate lat/long to lat/long',JPQUIET)
          OLDGRID(1) = REAL(NIGRID(1)) / PPMULT
          OLDGRID(2) = REAL(NIGRID(2)) / PPMULT
          IERR = HLL2LLW(LO12PT,PVYIN,PDVIN,
     X                   OLDGRID,AREA,POLE,GRID,
     X                   PUOUT,PVOUT,OUTLEN,NLON,NLAT)
          IF( IERR.NE.0 ) THEN
            CALL INTLOG(JP_ERROR,
     X        'INTUVU: HLL2LLW rotation failed',JPQUIET)
            INTUVU = JPROUTINE + 8
            GOTO 900
          ENDIF
        ENDIF
C
      ELSE

*    Section 8.1b   Generate interpolated gaussian U and V fields.
C     -----------------------------------------------------------------|
C
C
        CALL INTLOG(JP_DEBUG,
     X    'INTUVU: Rotate gaussian to gaussian',JPQUIET)
C
C       Dynamically allocate memory for rotated gaussian grids
C
        NUMPTS = NOGAUSS * NOGAUSS
        OUTLEN = 2 * NUMPTS * 8
C
cs        NGAUSS = ISEC2(10)
        IERR = HRG2GGW(LO12PT,
     X                 PVYIN,PDVIN,INLEN,
     X                 NIGAUSS,AREA,POLE,NOGAUSS,HOGAUST,
     X                 PUOUT,PVOUT,OUTLEN,NUMPTS)
        IF( IERR.NE.0 ) THEN
          CALL INTLOG(JP_ERROR,
     X        'INTUVU: HRG2GGW rotation failed',JPQUIET)
            INTUVU = JPROUTINE + 8
            GOTO 900
          ENDIF
C
      ENDIF
C
  890 CONTINUE
      IF( LFRAME ) THEN
        NLON = 1 + NINT(FLOAT(NOAREA(JPEAST)  - NOAREA(JPWEST)) /
     X         NOGRID(JPWESTEP))
        NLAT = 1 + NINT(FLOAT(NOAREA(JPNORTH) - NOAREA(JPSOUTH)) /
     X         NOGRID(JPNSSTEP))
        ISEC1(5) = 192
        ISEC3(2) = NINT(RMISSGV)
        ZSEC3(2) = RMISSGV
        LIMISSV = .TRUE.
        CALL MKFRAME(NLON,NLAT,PUOUT,RMISSGV,NOFRAME)
        CALL MKFRAME(NLON,NLAT,PVOUT,RMISSGV,NOFRAME)
      ENDIF

C
C
C     -----------------------------------------------------------------|
C*    Section 9.   Closedown.
C     -----------------------------------------------------------------|
C
  900 CONTINUE
C
C     Clear change flags for next product processing
      LCHANGE = .FALSE.
      LSMCHNG = .FALSE.
      LWINDSET = LOLDWIND
      DO 910 LOOP = 1, 4
        NOAREA(LOOP) = IOHOLD(LOOP)
  910 CONTINUE
C
      NIRESO = NOLD
C
      RETURN
      END