File: map.c

package info (click to toggle)
empire 1.18-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 460 kB
  • sloc: ansic: 5,604; xml: 1,016; makefile: 112
file content (1228 lines) | stat: -rw-r--r-- 33,412 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
/*
 * SPDX-FileCopyrightText: Copyright (C) 1987, 1988 Chuck Simmons
 * SPDX-License-Identifier: GPL-2.0+
 *
 * See the file COPYING, distributed with empire, for restriction
 * and warranty information.
 */

/*
map.c

This file contains routines for playing around with view maps,
real maps, path_maps, and cont_maps.
*/

#include "empire.h"
#include "extern.h"
#include <string.h>

#define SWAP(a, b)                                                             \
	{                                                                      \
		perimeter_t *x;                                                \
		x = a;                                                         \
		a = b;                                                         \
		b = x;                                                         \
	}

static void expand_perimeter(path_map_t *, view_map_t *, move_info_t *,
                             perimeter_t *, int, int, int, int, perimeter_t *,
                             perimeter_t *);
static void expand_prune(view_map_t *, path_map_t *, loc_t, int, perimeter_t *,
                         int *);
static int objective_cost(view_map_t *, move_info_t *, loc_t, int);
static int terrain_type(path_map_t *, view_map_t *, move_info_t *, loc_t,
                        loc_t);
static void start_perimeter(path_map_t *, perimeter_t *, loc_t, int);
static void add_cell(path_map_t *, loc_t, perimeter_t *, int, int, int);
static int vmap_count_path(path_map_t *, loc_t);

static perimeter_t p1; /* perimeter list for use as needed */
static perimeter_t p2;
static perimeter_t p3;
static perimeter_t p4;

static int best_cost; /* cost and location of best objective */
static loc_t best_loc;

/*
Map out a continent.  We are given a location on the continent.
We mark each square that is part of the continent and unexplored
territory adjacent to the continent.  By adjusting the value of
'bad_terrain', this routine can map either continents of land,
or lakes.
*/

void vmap_cont(int *cont_map, view_map_t *vmap, loc_t loc, char bad_terrain) {
	(void)memset((char *)cont_map, '\0', MAP_SIZE * sizeof(int));
	vmap_mark_up_cont(cont_map, vmap, loc, bad_terrain);
}

/*
Mark all squares of a continent and the squares that are adjacent
to the continent which are on the board.  Our passed location is
known to be either on the continent or adjacent to the continent.
*/

void vmap_mark_up_cont(int *cont_map, view_map_t *vmap, loc_t loc,
                       char bad_terrain) {
	int i, j;
	loc_t new_loc;
	char this_terrain;
	perimeter_t *from, *to;

	from = &p1;
	to = &p2;

	from->len = 1; /* init perimeter */
	from->list[0] = loc;
	cont_map[loc] = 1; /* loc is on continent */

	while (from->len) {
		to->len = 0; /* nothing in new perimeter yet */

		for (i = 0; i < from->len; i++) { /* expand perimeter */
			FOR_ADJ_ON(from->list[i], new_loc, j)
			if (!cont_map[new_loc]) {
				/* mark, but don't expand, unexplored territory
				 */
				if (vmap[new_loc].contents == ' ') {
					cont_map[new_loc] = 1;
				} else {
					if (vmap[new_loc].contents ==
					    MAP_LAND) {
						this_terrain = MAP_LAND;
					} else if (vmap[new_loc].contents ==
					           MAP_SEA) {
						this_terrain = MAP_SEA;
					} else {
						this_terrain =
						    game.real_map[new_loc]
						        .contents;
					}

					if (this_terrain !=
					    bad_terrain) { /* on continent? */
						cont_map[new_loc] = 1;
						to->list[to->len] = new_loc;
						to->len += 1;
					}
				}
			}
		}
		SWAP(from, to);
	}
}

/*
Map out a continent.  We are given a location on the continent.
We mark each square that is part of the continent.
By adjusting the value of
'bad_terrain', this routine can map either continents of land,
or lakes.
*/

static void rmap_mark_up_cont(int *cont_map, loc_t loc, char bad_terrain);

void rmap_cont(int *cont_map, loc_t loc, char bad_terrain) {
	(void)memset((char *)cont_map, '\0', MAP_SIZE * sizeof(int));
	rmap_mark_up_cont(cont_map, loc, bad_terrain);
}

/*
Mark all squares of a continent and the squares that are adjacent
to the continent which are on the board.  Our passed location is
known to be either on the continent or adjacent to the continent.

Someday this should be tweaked to use perimeter lists.
*/

static void rmap_mark_up_cont(int *cont_map, loc_t loc, char bad_terrain) {
	int i;
	loc_t new_loc;

	if (!game.real_map[loc].on_board) {
		return; /* off board */
	}
	if (cont_map[loc]) {
		return; /* already marked */
	}
	if (game.real_map[loc].contents == bad_terrain) {
		return; /* off continent */
	}
	cont_map[loc] = 1; /* on continent */

	FOR_ADJ(loc, new_loc, i)
	rmap_mark_up_cont(cont_map, new_loc, bad_terrain);
}

/*
Scan a continent recording items of interest on the continent.

This could be done as we mark up the continent.
*/

#define COUNT(c, item)                                                         \
	case c:                                                                \
		item += 1;                                                     \
		break

scan_counts_t vmap_cont_scan(int *cont_map, view_map_t *vmap) {
	scan_counts_t counts;
	count_t i;

	(void)memset((char *)&counts, '\0', sizeof(scan_counts_t));

	for (i = 0; i < MAP_SIZE; i++) {
		if (cont_map[i]) { /* cell on continent? */
			counts.size += 1;

			switch (vmap[i].contents) {
				COUNT(' ', counts.unexplored);
				COUNT('O', counts.user_cities);
				COUNT('A', counts.user_objects[ARMY]);
				COUNT('F', counts.user_objects[FIGHTER]);
				COUNT('P', counts.user_objects[PATROL]);
				COUNT('D', counts.user_objects[DESTROYER]);
				COUNT('S', counts.user_objects[SUBMARINE]);
				COUNT('T', counts.user_objects[TRANSPORT]);
				COUNT('C', counts.user_objects[CARRIER]);
				COUNT('B', counts.user_objects[BATTLESHIP]);
				COUNT('X', counts.comp_cities);
				COUNT('a', counts.comp_objects[ARMY]);
				COUNT('f', counts.comp_objects[FIGHTER]);
				COUNT('p', counts.comp_objects[PATROL]);
				COUNT('d', counts.comp_objects[DESTROYER]);
				COUNT('s', counts.comp_objects[SUBMARINE]);
				COUNT('t', counts.comp_objects[TRANSPORT]);
				COUNT('c', counts.comp_objects[CARRIER]);
				COUNT('b', counts.comp_objects[BATTLESHIP]);
				COUNT(MAP_CITY, counts.unowned_cities);
			case MAP_LAND:
				break;
			case MAP_SEA:
				break;
			default: /* check for city underneath */
				if (game.real_map[i].contents == MAP_CITY) {
					switch (game.real_map[i].cityp->owner) {
						COUNT(USER, counts.user_cities);
						COUNT(COMP, counts.comp_cities);
						COUNT(UNOWNED,
						      counts.unowned_cities);
					}
				}
			}
		}
	}
	return counts;
}

/*
Scan a real map as above.  Only the 'size' and 'unowned_cities'
fields are valid.
*/

scan_counts_t rmap_cont_scan(int *cont_map) {
	scan_counts_t counts;
	count_t i;

	(void)memset((char *)&counts, '\0', sizeof(scan_counts_t));

	for (i = 0; i < MAP_SIZE; i++) {
		if (cont_map[i]) { /* cell on continent? */
			counts.size += 1;
			if (game.real_map[i].contents == MAP_CITY) {
				counts.unowned_cities += 1;
			}
		}
	}
	return counts;
}

/*
Return true if a location is on the edge of a continent.
*/

bool map_cont_edge(const int *cont_map, loc_t loc) {
	loc_t i, j;

	if (!cont_map[loc]) {
		return false; /* not on continent */
	}
	FOR_ADJ(loc, j, i)
	if (!cont_map[j]) {
		return true; /* edge of continent */
	}
	return false;
}

/*
Find the nearest objective for a piece.  This routine actually does
some real work.  This code represents my fourth rewrite of the
algorithm.  This algorithm is central to the strategy used by the
computer.

Given a view_map, we create a path_map.  On the path_map, we record
the distance from a location to the nearest objective.  We are
given information about what the interesting objectives are, and
how interesting each objective is.

We use a breadth first search to find the nearest objective.
We maintain something called a "perimeter list".  This list
initially contains a list of squares that we can reach in 'n' moves.
On each pass through our loop, we add all squares that are adjacent
to the perimeter list and which lie outside the perimeter to our
list.  (The loop is only slightly more complicated for armies and
transports.)

When our perimeter list becomes empty, or when the distance to
the current perimeter is at least as large as the weighted distance
to the best objective, we return the location of the best objective
found.

The 'cost' field in a path_map must be INFINITY if the cell lies
outside of the current perimeter.  The cost for cells that lie
on or within the current perimeter doesn't matter, except that
the information must be consistent with the needs of 'vmap_mark_path'.
*/

/* Find an objective over a single type of terrain. */

loc_t vmap_find_xobj(path_map_t path_map[], view_map_t *vmap, loc_t loc,
                     move_info_t *move_info, int start, int expand) {
	perimeter_t *from;
	perimeter_t *to;
	int cur_cost;

	from = &p1;
	to = &p2;

	start_perimeter(path_map, from, loc, start);
	cur_cost = 0; /* cost to reach current perimeter */

	for (;;) {
		to->len = 0; /* nothing in perim yet */
		expand_perimeter(path_map, vmap, move_info, from, expand,
		                 cur_cost, 1, 1, to, to);

		if (game.trace_pmap) {
			print_pzoom("After xobj loop:", path_map, vmap);
		}

		cur_cost += 1;
		if (to->len == 0 || best_cost <= cur_cost) {
			return best_loc;
		}

		SWAP(from, to);
	}
}

/* Find an objective for a piece that crosses land and water. */

loc_t vmap_find_aobj(path_map_t path_map[], view_map_t *vmap, loc_t loc,
                     move_info_t *move_info) {
	return vmap_find_xobj(path_map, vmap, loc, move_info, T_LAND, T_AIR);
}

/* Find an objective for a piece that crosses only water. */

loc_t vmap_find_wobj(path_map_t path_map[], view_map_t *vmap, loc_t loc,
                     move_info_t *move_info) {
	return vmap_find_xobj(path_map, vmap, loc, move_info, T_WATER, T_WATER);
}

/* Find an objective for a piece that crosses only land. */

loc_t vmap_find_lobj(path_map_t path_map[], view_map_t *vmap, loc_t loc,
                     move_info_t *move_info) {
	return vmap_find_xobj(path_map, vmap, loc, move_info, T_LAND, T_LAND);
}

/*
Find an objective moving from land to water.
This is mildly complicated.  It costs 2 to move on land
and one to move on water.  To handle this, we expand our current
perimeter by one cell, where land can be expanded to either
land or water, and water is only expanded to water.  Then
we expand any water one more cell.

We have different objectives depending on whether the objective
is being approached from the land or the water.
*/

loc_t vmap_find_lwobj(path_map_t path_map[], view_map_t *vmap, loc_t loc,
                      move_info_t *move_info, int beat_cost) {
	perimeter_t *cur_land;
	perimeter_t *cur_water;
	perimeter_t *new_land;
	perimeter_t *new_water;
	int cur_cost;

	cur_land = &p1;
	cur_water = &p2;
	new_water = &p3;
	new_land = &p4;

	start_perimeter(path_map, cur_land, loc, T_LAND);
	cur_water->len = 0;
	best_cost = beat_cost; /* we can do this well */
	cur_cost = 0;          /* cost to reach current perimeter */

	for (;;) {
		/* expand current perimeter one cell */
		new_water->len = 0;
		new_land->len = 0;
		expand_perimeter(path_map, vmap, move_info, cur_water, T_WATER,
		                 cur_cost, 1, 1, new_water, NULL);

		expand_perimeter(path_map, vmap, move_info, cur_land, T_AIR,
		                 cur_cost, 1, 2, new_water, new_land);

		/* expand new water one cell */
		cur_water->len = 0;
		expand_perimeter(path_map, vmap, move_info, new_water, T_WATER,
		                 cur_cost + 1, 1, 1, cur_water, NULL);

		if (game.trace_pmap) {
			print_pzoom("After lwobj loop:", path_map, vmap);
		}

		cur_cost += 2;
		if ((cur_water->len == 0 && new_land->len == 0) ||
		    (best_cost <= cur_cost)) {
			return best_loc;
		}

		SWAP(cur_land, new_land);
	}
}

#ifdef __UNUSED__
/*
Return the cost to reach the adjacent cell of the correct type
with the lowest cost.
*/

static int best_adj(path_map_t *pmap, loc_t loc, int type) {
	int i;
	loc_t new_loc;
	int best;

	best = INFINITY;

	FOR_ADJ(loc, new_loc, i)
	if (pmap[new_loc].terrain == type && pmap[new_loc].cost < best) {
		best = pmap[new_loc].cost;
	}

	return best;
}
#endif

/*
Find an objective moving from water to land.
Here, we expand water to either land or water.
We expand land only to land.

We cheat ever so slightly, but this cheating accurately reflects
the mechanics o moving.  The first time we expand water we can
expand to land or water (army moving off tt or tt moving on water),
but the second time, we only expand water (tt taking its second move).
*/

loc_t vmap_find_wlobj(path_map_t path_map[], view_map_t *vmap, loc_t loc,
                      move_info_t *move_info) {
	perimeter_t *cur_land;
	perimeter_t *cur_water;
	perimeter_t *new_land;
	perimeter_t *new_water;
	int cur_cost;

	cur_land = &p1;
	cur_water = &p2;
	new_water = &p3;
	new_land = &p4;

	start_perimeter(path_map, cur_water, loc, T_WATER);
	cur_land->len = 0;
	cur_cost = 0; /* cost to reach current perimeter */

	for (;;) {
		/* expand current perimeter one cell */
		new_water->len = 0;
		new_land->len = 0;
		expand_perimeter(path_map, vmap, move_info, cur_water, T_AIR,
		                 cur_cost, 1, 2, new_water, new_land);

		expand_perimeter(path_map, vmap, move_info, cur_land, T_LAND,
		                 cur_cost, 1, 2, NULL, new_land);

		/* expand new water one cell to water */
		cur_water->len = 0;
		expand_perimeter(path_map, vmap, move_info, new_water, T_WATER,
		                 cur_cost + 1, 1, 1, cur_water, NULL);

		if (game.trace_pmap) {
			print_pzoom("After wlobj loop:", path_map, vmap);
		}

		cur_cost += 2;
		if ((cur_water->len == 0 && new_land->len == 0) ||
		    (best_cost <= cur_cost)) {
			return best_loc;
		}
		SWAP(cur_land, new_land);
	}
}

/*
Initialize the perimeter searching.

This routine was taking a significant amount of the program time (10%)
doing the initialization of the path map.  We now use an external
constant and 'memcpy'.
*/

static path_map_t pmap_init[MAP_SIZE];
static bool init_done = false;

static void start_perimeter(path_map_t *pmap, perimeter_t *perim, loc_t loc,
                            int terrain) {
	/* zap the path map */
	if (!init_done) {
		int i;

		init_done = true;
		for (i = 0; i < MAP_SIZE; i++) {
			pmap_init[i].cost =
			    INFINITY; /* everything lies outside perim */
			pmap_init[i].terrain = T_UNKNOWN;
		}
	}
	(void)memcpy((char *)pmap, (char *)pmap_init, sizeof(pmap_init));

	/* put first location in perimeter */
	pmap[loc].cost = 0;
	pmap[loc].inc_cost = 0;
	pmap[loc].terrain = terrain;

	perim->len = 1;
	perim->list[0] = loc;

	best_cost = INFINITY; /* no best yet */
	best_loc = loc;       /* if nothing found, result is current loc */
}

/*
Expand the perimeter.

Note that 'waterp' and 'landp' may be the same.

For each cell of the current perimeter, we examine each
cell adjacent to that cell which lies outside of the current
perimeter.  If the adjacent cell is an objective, we update
best_cost and best_loc.  If the adjacent cell is of the correct
type, we turn place the adjacent cell in either the new water perimeter
or the new land perimeter.

We set the cost to reach the current perimeter.
*/

static void
expand_perimeter(path_map_t *pmap, view_map_t *vmap, move_info_t *move_info,
                 perimeter_t *curp, int type, int cur_cost, int inc_wcost,
                 int inc_lcost, perimeter_t *waterp, perimeter_t *landp)
/* pmap = path map to up1date */
/* move_info = objectives and weights */
/* curp = perimeter to expand */
/* type = type of terrain to expand */
/* cur_cost = cost to reach cells on perimeter */
/* inc_wcost = cost to enter new water cells */
/* inc_lcost = cost to enter new land cells */
/* waterp = pointer to new water perimeter */
/* landp = pointer to new land perimeter */
{
	register long i;
	register int j;
	loc_t new_loc;
	int obj_cost;
	register int new_type;

	for (i = 0; i < curp->len; i++) { /* for each perimeter cell... */
		FOR_ADJ_ON(curp->list[i], new_loc,
		           j) { /* for each adjacent cell... */
			register path_map_t *pm = pmap + new_loc;

			if (pm->cost == INFINITY) {
				new_type = terrain_type(pmap, vmap, move_info,
				                        curp->list[i], new_loc);

				if (new_type == T_LAND && (type & T_LAND)) {
					add_cell(pmap, new_loc, landp, new_type,
					         cur_cost, inc_lcost);
				} else if (new_type == T_WATER &&
				           (type & T_WATER)) {
					add_cell(pmap, new_loc, waterp,
					         new_type, cur_cost, inc_wcost);
				} else if (new_type ==
				           T_UNKNOWN) { /* unreachable cell? */
					pm->terrain = new_type;
					pm->cost = cur_cost + INFINITY / 2;
					pm->inc_cost = INFINITY / 2;
				}
				if (pmap[new_loc].cost !=
				    INFINITY) { /* did we expand? */
					obj_cost = objective_cost(
					    vmap, move_info, new_loc, cur_cost);
					if (obj_cost < best_cost) {
						best_cost = obj_cost;
						best_loc = new_loc;
						if (new_type == T_UNKNOWN) {
							pm->cost = cur_cost + 2;
							pm->inc_cost = 2;
						}
					}
				}
			}
		}
	}
}

/* Add a cell to a perimeter list. */

static void add_cell(path_map_t *pmap, loc_t new_loc, perimeter_t *perim,
                     int terrain, int cur_cost, int inc_cost) {
	register path_map_t *pm = &pmap[new_loc];

	ASSERT(pm != NULL);

	// cppcheck-suppress nullPointerRedundantCheck
	pm->terrain = terrain;
	// cppcheck-suppress nullPointerRedundantCheck
	pm->inc_cost = inc_cost;
	// cppcheck-suppress nullPointerRedundantCheck
	pm->cost = cur_cost + inc_cost;

	ASSERT(perim != NULL);

	// cppcheck-suppress nullPointerRedundantCheck
	perim->list[perim->len] = new_loc;
	// cppcheck-suppress nullPointerRedundantCheck
	perim->len += 1;
}

/* Compute the cost to move to an objective. */

static int objective_cost(view_map_t *vmap, move_info_t *move_info, loc_t loc,
                          int base_cost) {
	char *p;
	int w;
	city_info_t *cityp;

	p = strchr(move_info->objectives, vmap[loc].contents);
	if (!p) {
		return INFINITY;
	}

	w = move_info->weights[p - move_info->objectives];
	if (w >= 0) {
		return w + base_cost;
	}

	switch (w) {
	case W_TT_BUILD:
		/* handle special case of moving to tt building city */
		cityp = find_city(loc);
		if (!cityp) {
			return base_cost + 2; /* tt is already here */
		}
		if (cityp->prod != TRANSPORT) {
			return base_cost + 2; /* just finished a tt */
		}
		/* compute time to wait for tt to be built */
		w = piece_attr[TRANSPORT].build_time - cityp->work;
		w *= 2; /* had to cross land to get here */
		if (w < base_cost + 2) {
			w = base_cost + 2;
		}
		return w;

	default:
		ABORT;
		/* NOTREACHED */
		return -1;
	}
}

/*
Return the type of terrain at a vmap location.
*/

static int terrain_type(path_map_t *pmap, view_map_t *vmap,
                        move_info_t *move_info, loc_t from_loc, loc_t to_loc) {
	if (vmap[to_loc].contents == MAP_LAND) {
		return T_LAND;
	}
	if (vmap[to_loc].contents == MAP_SEA) {
		return T_WATER;
	}
	if (vmap[to_loc].contents == '%') {
		return T_UNKNOWN; /* magic objective */
	}
	if (vmap[to_loc].contents == ' ') {
		return pmap[from_loc].terrain;
	}

	switch (game.real_map[to_loc].contents) {
	case MAP_SEA:
		return T_WATER;
	case MAP_LAND:
		return T_LAND;
	case MAP_CITY:
		if (game.real_map[to_loc].cityp->owner ==
		    move_info->city_owner) {
			return T_WATER;
		} else {
			return T_UNKNOWN; /* cannot cross */
		}
	}
	ABORT;
	/*NOTREACHED*/
	return -1;
}

/*
Prune unexplored territory.  We take a view map and we modify it
so that unexplored territory that is adjacent to a lot of land
or a lot of water is marked as being either that land or water.
So basically, we are making a predicition about what we expect
for land and water.  We iterate this algorithm until either
the next iteration would remove all unexplored territory, or
there is nothing more about which we can make an assumption.

First, we use a pathmap to save the number of adjacent land
and water cells for each unexplored cell.  Cells which have
adjacent explored territory are placed in a perimeter list.
We also count the number of cells that are not unexplored.

We now take this perimeter list and make high-probability
predictions.

Then we round things off by making one pass of medium
probability predictions.

Then we make multiple passes extending our predictions.

We stop if at any point all remaining unexplored cells are
in a perimeter list, or if no predictions were made during
one of the final passes.

Unlike other algorithms, here we deal with "off board" locations.
So be careful.
*/

void vmap_prune_explore_locs(view_map_t *vmap) {
	path_map_t pmap[MAP_SIZE];
	perimeter_t *from, *to;
	int explored;
	loc_t loc, new_loc;
	count_t i;
	long copied;

	(void)memset(pmap, '\0', sizeof(pmap));
	from = &p1;
	to = &p2;
	from->len = 0;
	explored = 0;

	/* build initial path map and perimeter list */
	for (loc = 0; loc < MAP_SIZE; loc++) {
		if (vmap[loc].contents != ' ') {
			explored += 1;
		} else { /* add unexplored cell to perim */
			FOR_ADJ(loc, new_loc, i) {
				if (new_loc < 0 || new_loc >= MAP_SIZE) {
					; /* ignore off map */
				} else if (vmap[new_loc].contents == ' ') {
					; /* ignore adjacent unexplored */
				} else if (game.real_map[new_loc].contents !=
				           MAP_SEA) {
					pmap[loc].cost += 1; /* count land */
				} else {
					pmap[loc].inc_cost +=
					    1; /* count water */
				}
			}
			if (pmap[loc].cost || pmap[loc].inc_cost) {
				from->list[from->len] = loc;
				from->len += 1;
			}
		}
	}

	if (game.print_vmap == 'I') {
		print_xzoom(vmap);
	}

	for (;;) { /* do high probability predictions */
		if (from->len + explored == MAP_SIZE) {
			return;
		}
		to->len = 0;
		copied = 0;

		for (i = 0; i < from->len; i++) {
			loc = from->list[i];
			if (pmap[loc].cost >= 5) {
				expand_prune(vmap, pmap, loc, T_LAND, to,
				             &explored);
			} else if (pmap[loc].inc_cost >= 5) {
				expand_prune(vmap, pmap, loc, T_WATER, to,
				             &explored);
			} else if ((loc < MAP_WIDTH ||
			            loc >= MAP_SIZE - MAP_WIDTH) &&
			           pmap[loc].cost >= 3) {
				expand_prune(vmap, pmap, loc, T_LAND, to,
				             &explored);
			} else if ((loc < MAP_WIDTH ||
			            loc >= MAP_SIZE - MAP_WIDTH) &&
			           pmap[loc].inc_cost >= 3) {
				expand_prune(vmap, pmap, loc, T_WATER, to,
				             &explored);
			} else if ((loc == 0 || loc == MAP_SIZE - 1) &&
			           pmap[loc].cost >= 2) {
				expand_prune(vmap, pmap, loc, T_LAND, to,
				             &explored);
			} else if ((loc == 0 || loc == MAP_SIZE - 1) &&
			           pmap[loc].inc_cost >= 2) {
				expand_prune(vmap, pmap, loc, T_WATER, to,
				             &explored);
			} else { /* copy perimeter cell */
				to->list[to->len] = loc;
				to->len += 1;
				copied += 1;
			}
		}
		if (copied == from->len) {
			break; /* nothing expanded */
		}
		SWAP(from, to);
	}

	if (game.print_vmap == 'I') {
		print_xzoom(vmap);
	}

	/* one pass for medium probability predictions */
	if (from->len + explored == MAP_SIZE) {
		return;
	}
	to->len = 0;

	for (i = 0; i < from->len; i++) {
		loc = from->list[i];
		if (pmap[loc].cost > pmap[loc].inc_cost) {
			expand_prune(vmap, pmap, loc, T_LAND, to, &explored);
		} else if (pmap[loc].cost < pmap[loc].inc_cost) {
			expand_prune(vmap, pmap, loc, T_WATER, to, &explored);
		} else { /* copy perimeter cell */
			to->list[to->len] = loc;
			to->len += 1;
		}
	}
	SWAP(from, to);

	if (game.print_vmap == 'I') {
		print_xzoom(vmap);
	}

	/* multiple low probability passes */
	for (;;) {
		/* return if very little left to explore */
		if (from->len + explored >= MAP_SIZE - MAP_HEIGHT) {
			if (game.print_vmap == 'I') {
				print_xzoom(vmap);
			}
			return;
		}
		to->len = 0;
		copied = 0;

		for (i = 0; i < from->len; i++) {
			loc = from->list[i];
			if (pmap[loc].cost >= 4 && pmap[loc].inc_cost < 4) {
				expand_prune(vmap, pmap, loc, T_LAND, to,
				             &explored);
			} else if (pmap[loc].inc_cost >= 4 &&
			           pmap[loc].cost < 4) {
				expand_prune(vmap, pmap, loc, T_WATER, to,
				             &explored);
			} else if ((loc < MAP_WIDTH ||
			            loc >= MAP_SIZE - MAP_WIDTH) &&
			           pmap[loc].cost > pmap[loc].inc_cost) {
				expand_prune(vmap, pmap, loc, T_LAND, to,
				             &explored);
			} else if ((loc < MAP_WIDTH ||
			            loc >= MAP_SIZE - MAP_WIDTH) &&
			           pmap[loc].inc_cost > pmap[loc].cost) {
				expand_prune(vmap, pmap, loc, T_WATER, to,
				             &explored);
			} else { /* copy perimeter cell */
				to->list[to->len] = loc;
				to->len += 1;
				copied += 1;
			}
		}
		if (copied == from->len) {
			break; /* nothing expanded */
		}
		SWAP(from, to);
	}
	if (game.print_vmap == 'I') {
		print_xzoom(vmap);
	}
}

/*
Expand an unexplored cell.  We increment the land or water count
of each neighbor.  Any neighbor that acquires a non-zero count
is added to the 'to' perimiter list.  The count of explored
territory is incremented.

Careful:  'loc' may be "off board".
*/

static void expand_prune(view_map_t *vmap, path_map_t *pmap, loc_t loc,
                         int type, perimeter_t *to, int *explored) {
	int i;
	loc_t new_loc;

	*explored += 1;

	if (type == T_LAND) {
		vmap[loc].contents = MAP_LAND;
	} else {
		vmap[loc].contents = MAP_SEA;
	}

	FOR_ADJ(loc, new_loc, i)
	if (new_loc >= 0 && new_loc < MAP_SIZE &&
	    vmap[new_loc].contents == ' ') {
		if (!pmap[new_loc].cost && !pmap[new_loc].inc_cost) {
			to->list[to->len] = new_loc;
			to->len += 1;
		}
		if (type == T_LAND) {
			pmap[new_loc].cost += 1;
		} else {
			pmap[new_loc].inc_cost += 1;
		}
	}
}

/*
Find the shortest path from the current location to the
destination which passes over valid terrain.  We return
the destination if a path exists.  Otherwise we return the
origin.

This is similar to 'find_objective' except that we know our destination.
*/

loc_t vmap_find_dest(path_map_t path_map[], view_map_t vmap[], loc_t cur_loc,
                     loc_t dest_loc, int owner, int terrain)
/* cur_loc = current location of piece */
/* dest_loc = destination of piece */
/* owner = owner of piece being moved */
/* terrain = terrain we can cross */
{
	perimeter_t *from;
	perimeter_t *to;
	int cur_cost;
	int start_terrain;
	move_info_t move_info;
	char old_contents;

	old_contents = vmap[dest_loc].contents;
	vmap[dest_loc].contents = '%'; /* mark objective */
	move_info.city_owner = owner;
	move_info.objectives = "%";
	move_info.weights[0] = 1;

	from = &p1;
	to = &p2;

	if (terrain == T_AIR) {
		start_terrain = T_LAND;
	} else {
		start_terrain = terrain;
	}

	start_perimeter(path_map, from, cur_loc, start_terrain);
	cur_cost = 0; /* cost to reach current perimeter */

	for (;;) {
		to->len = 0; /* nothing in perim yet */
		expand_perimeter(path_map, vmap, &move_info, from, terrain,
		                 cur_cost, 1, 1, to, to);
		cur_cost += 1;
		if (to->len == 0 || best_cost <= cur_cost) {
			vmap[dest_loc].contents = old_contents;
			return best_loc;
		}
		SWAP(from, to);
	}
}

/*
Starting with the destination, we recursively back track toward the source
marking all cells which are on a shortest path between the start and the
destination.  To do this, we know the distance from the destination to
the start.  The destination is on a path.  We then find the cells adjacent
to the destination and nearest to the source and place them on the path.

If we know square P is on the path, then S is on the path if S is
adjacent to P, the cost to reach S is less than the cost to reach P,
and the cost to move from S to P is the difference in cost between
S and P.

Someday, this routine should probably use perimeter lists as well.
*/

void vmap_mark_path(path_map_t *path_map, view_map_t *vmap, loc_t dest) {
	int n;
	loc_t new_dest;

	if (path_map[dest].cost == 0) {
		return; /* reached end of path */
	}
	if (path_map[dest].terrain == T_PATH) {
		return; /* already marked */
	}
	path_map[dest].terrain = T_PATH; /* this square is on path */

	/* loop to mark adjacent squares on shortest path */
	FOR_ADJ(dest, new_dest, n)
	if (path_map[new_dest].cost ==
	    path_map[dest].cost - path_map[dest].inc_cost) {
		vmap_mark_path(path_map, vmap, new_dest);
	}
}

/*
Create a marked path map.  We mark those squares adjacent to the
starting location which are on the board.  'find_dir' must be
invoked to decide which squares are actually valid.
*/

void vmap_mark_adjacent(path_map_t path_map[], loc_t loc) {
	int i;
	loc_t new_loc;

	FOR_ADJ_ON(loc, new_loc, i)
	path_map[new_loc].terrain = T_PATH;
}

/*
Modify a marked path map.  We mark those squares adjacent to the
starting location which are on the board and which are adjacent
to a location on the existing shortest path.
*/

void vmap_mark_near_path(path_map_t path_map[], loc_t loc) {
	int i, j;
	loc_t new_loc, xloc;
	int hit_loc[8];

	(void)memset((char *)hit_loc, '\0', sizeof(int) * 8);

	FOR_ADJ_ON(loc, new_loc, i) {
		FOR_ADJ_ON(new_loc, xloc, j)
		if (xloc != loc && path_map[xloc].terrain == T_PATH) {
			hit_loc[i] = 1;
			break;
		}
	}
	for (i = 0; i < 8; i++) {
		if (hit_loc[i]) {
			path_map[loc + dir_offset[i]].terrain = T_PATH;
		}
	}
}

/*
Look at each neighbor of 'loc'.  Select the first marked cell which
is on a short path to the desired destination, and which holds a valid
terrain.  Note that while this terrain is matched against a 'vmap',
it differs slightly from terrains used above.  This terrain is the
terrain to which we can move immediately, and does not include terrain
for which we would have to wait for another piece to move off of.

We prefer diagonal moves, and we try to have as many squares
as possible containing something in 'adj_char'.

For tie-breaking, we prefer moving to cells that are adjacent to
as many other squares on the path.  This should have a few benefits:

1)  Fighters are less likely to be blocked from reaching a city
because they stay in the center of the path and increase the number
of options for subsequent moves.

2)  Transports will approach a city so that as many armies
as possible can hop off the tt on one turn to take a valid
path toward the city.

3)  User pieces will move more intuitively by staying in the
center of the best path.
*/

static int order[] = {NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST,
                      WEST,      EAST,      NORTH,     SOUTH};

loc_t vmap_find_dir(path_map_t path_map[], view_map_t *vmap, loc_t loc,
                    char *terrain, char *adj_char) {
	int i, count, bestcount;
	loc_t bestloc;
	int path_count, bestpath;
	char *p;

	if (game.trace_pmap) {
		print_pzoom("Before vmap_find_dir:", path_map, vmap);
	}

	bestcount = -INFINITY; /* no best yet */
	bestpath = -1;
	bestloc = loc;

	for (i = 0; i < 8; i++) { /* for each adjacent square */
		loc_t new_loc = loc + dir_offset[order[i]];
		if (path_map[new_loc].terrain ==
		    T_PATH) { /* which is on path */
			p = strchr(terrain, vmap[new_loc].contents);

			if (p != NULL) { /* desirable square? */
				count = vmap_count_adjacent(vmap, new_loc,
				                            adj_char);
				path_count = vmap_count_path(path_map, new_loc);

				/* remember best location */
				if (count > bestcount ||
				    (count == bestcount &&
				     path_count > bestpath)) {
					bestcount = count;
					bestpath = path_count;
					bestloc = new_loc;
				}
			}
		}
	}
	return (bestloc);
}

/*
Count the number of adjacent squares of interest.
Squares are weighted so that the first in the list
is the most interesting.
*/

int vmap_count_adjacent(view_map_t *vmap, loc_t loc, char *adj_char) {
	int i, count;
	loc_t new_loc;
	char *p;
	int len;

	len = strlen(adj_char);

	count = 0;

	FOR_ADJ_ON(loc, new_loc, i) {
		p = strchr(adj_char, vmap[new_loc].contents);
		if (p) {
			count += 8 * (len - (p - adj_char));
		}
	}
	return (count);
}

/*
   Count the number of adjacent cells that are on the path.
 */

int vmap_count_path(path_map_t *pmap, loc_t loc) {
	int i, count;
	loc_t new_loc;

	count = 0;

	FOR_ADJ_ON(loc, new_loc, i)
	if (pmap[new_loc].terrain == T_PATH) {
		count += 1;
	}

	return (count);
}

/*
See if a location is on the shore.  We return true if a surrounding
cell contains water and is on the board.
*/

bool rmap_shore(loc_t loc) {
	loc_t i, j;

	FOR_ADJ_ON(loc, j, i)
	if (game.real_map[j].contents == MAP_SEA) {
		return (true);
	}

	return (false);
}

bool vmap_shore(view_map_t *vmap, loc_t loc) {
	loc_t i, j;

	FOR_ADJ_ON(loc, j, i)
	if (vmap[j].contents != ' ' && vmap[j].contents != MAP_LAND &&
	    game.real_map[j].contents == MAP_SEA) {
		return (true);
	}

	return (false);
}

/*
Return true if a location is surrounded by ocean.  Off board locations
which cannot be moved to are treated as ocean.
*/

bool vmap_at_sea(view_map_t *vmap, loc_t loc) {
	loc_t i, j;

	if (game.real_map[loc].contents != MAP_SEA) {
		return (false);
	}
	FOR_ADJ_ON(loc, j, i)
	if (vmap[j].contents == ' ' || vmap[j].contents == MAP_LAND ||
	    game.real_map[j].contents != MAP_SEA) {
		return (false);
	}

	return (true);
}

bool rmap_at_sea(loc_t loc) {
	loc_t i, j;

	if (game.real_map[loc].contents != MAP_SEA) {
		return (false);
	}
	FOR_ADJ_ON(loc, j, i) {
		if (game.real_map[j].contents != MAP_SEA) {
			return (false);
		}
	}
	return (true);
}

/* end */